分享
分销 收藏 举报 申诉 / 8
播放页_导航下方通栏广告

类型高中必修一集合复习讲义.doc

  • 上传人:精****
  • 文档编号:10645012
  • 上传时间:2025-06-06
  • 格式:DOC
  • 页数:8
  • 大小:486.51KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中 必修 集合 复习 讲义
    资源描述:
    【基础知识】 集 合 定 义 特 征 一组对象的全体形成一个集合 确定性、互异性、无序性 表示法 分 类 列举法{1,2,3,…}、描述法{x|P} 有限集、无限集 数 集 关 系 自然数集N、正整数集、整数集Z、有理数集Q、实数集R、空集φ 元素和集合的关系是如 集合与集合之间的关系是 运 算 性 质 交集 A∩B={x|x∈A且x∈B}; 并集 A∪B={x|x∈A或x∈B}; 补集 ={x|xA且x∈U},U为全集 AA; φA; 若AB,BC,则AC; A∩A=A∪A=A; A∩φ=φ;A∪φ=A;A∩B=AA∪B=BAB; A∩CA=φ; A∪CA=I;C( CA)=A 方 法 韦恩示意图 数轴分析 注意:① 区别∈与、与、a与{a}、φ与{φ}、{(1,2)}与{1,2}; ② AB时,A有两种情况:A=φ与A≠φ4. ③ 对于任意集合,则 ;; ④ 若集合中有个元素,则集合的所有不同的子集个数为,所有真子集的个数是,所有非空子集的个数是,所有非空真子集的个数是。 若集合中有个元素,则集合的所有不同的子集个数为,所有真子集的个数是,所有非空子集的个数是,所有非空真子集的个数是。 【例题解析】 题型1. 正确理解和运用集合概念 理解集合的概念,正确应用集合的性质是解此类题目的关键. 例1.已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},则M∩N=( ) A.(0,1),(1,2) B.{(0,1),(1,2)}C.{y|y=1,或y=2} D.{y|y≥1} 思路启迪:集合M、N是用描述法表示的,元素是实数y而不是实数对(x,y),因此M、N分别表示函数y=x2+1(x∈R),y=x+1(x∈R)的值域,求M∩N即求两函数值域的交集. 解:M={y|y=x2+1,x∈R}={y|y≥1}, N={y|y=x+1,x∈R}={y|y∈R}. ∴M∩N={y|y≥1}∩{y|y∈R}={y|y≥1},∴应选D. 点评:①本题求M∩N,经常发生解方程组 从而选B的错误,这是由于在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M、N的元素是数而不是点,因此M、N是数集而不是点集.②集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x|y=x2+1}、{y|y=x2+1,x∈R}、{(x,y)|y=x2+1,x∈R},这三个集合是不同的. 例2.若P={y|y=x2,x∈R},Q={y|y=x2+1,x∈R},则P∩Q等于( ) A.P   B.Q C.  D.不知道 思路启迪:类似上题知P集合是y=x2(x∈R)的值域集合,同样Q集合是y= x2+1(x∈R)的值域集合,这样P∩Q意义就明确了. 解:事实上,P、Q中的代表元素都是y,它们分别表示函数y=x2,y= x2+1的值域,由P={y|y≥0},Q={y|y≥1},知QP,即P∩Q=Q.∴应选B. 例3. 若P={y|y=x2,x∈R},Q={(x,y)|y=x2,x∈R},则必有( ) A.P∩Q=  B.P Q C.P=Q D.P Q 例4若,则= ( ) A.{3} B.{1} C. D.{-1} 题型2.集合元素的互异性 集合元素的互异性,是集合的重要属性,教学实践告诉我们,集合中元素的互异性常常被学生在解题中忽略,从而导致解题的失败,下面再结合例题进一步讲解以期强化对集合元素互异性的认识. 例5. 若A={2,4, 3-22-+7},B={1, +1, 2-2+2,- (2-3-8), 3+2+3+7},且A∩B={2,5},则实数的值是________. 解答启迪:∵A∩B={2,5},∴3-22-+7=5,由此求得=2或=±1. A={2,4,5},集合B中的元素是什么,它是否满足元素的互异性,有待于进一步考查. 当=1时,2-2+2=1,与元素的互异性相违背,故应舍去=1. 当=-1时,B={1,0,5,2,4},与A∩B={2,5}相矛盾,故又舍去=-1. 当=2时,A={2,4,5},B={1,3,2,5,25},此时A∩B={2,5},满足题设. 故=2为所求. 例6. 已知集合A={,+b, +2b},B={,c, c2}.若A=B,则c的值是______. 例7.已知集合A={x|x2-3x+2=0},B={x|x2-x+-1=0},且A∪B=A,则的值为______. 题型3.要注意掌握好证明、判断两集合关系的方法 集合与集合之间的关系问题,是我们解答数学问题过程中经常遇到,并且必须解决的问题,因此应予以重视.反映集合与集合关系的一系列概念,都是用元素与集合的关系来定义的.因此,在证明(判断)两集合的关系时,应回到元素与集合的关系中去. 例8.设集合A={|=3n+2,n∈Z},集合B={b|b=3k-1,k∈Z},则集合A、B的关系是________. 解:任设∈A,则=3n+2=3(n+1)-1(n∈Z), ∴ n∈Z,∴n+1∈Z.∴ ∈B,故.    ① 又任设 b∈B,则 b=3k-1=3(k-1)+2(k∈Z), ∵ k∈Z,∴k-1∈Z.∴ b∈A,故    ② 由①、②知A=B. 点评:这里说明∈B或b∈A的过程中,关键是先要变(或凑)出形式,然后再推理. 例9若A、B、C为三个集合,,则一定有( ) A .     B .    C .    D . [考查目的]本题主要考查集合间关系的运算. 解:由知,,故选A. 例10.设集合,则满足的集合B的个数是( ) A . 1 B .3 C .4 D . 8 例11. 记关于的不等式的解集为,不等式的解集为. (I)若,求; (II)若,求正数的取值范围. 题型4. 要注意空集的特殊性和特殊作用 空集是一个特殊的重要集合,它不含任何元素,是任何集合的子集,是任何非空集合的真子集.显然,空集与任何集合的交集为空集,与任何集合的并集仍等于这个集合.当题设中隐含有空集参与的集合关系时,其特殊性很容易被忽视的,从而引发解题失误. 例12. 已知A={x|x2-3x+2=0},B={x|x-2=0}且A∪B=A,则实数组成的集合C是____. 解:由x2-3x+2=0得x=1或2.当x=1时,=2,当x=2时,=1. 这个结果是不完整的,上述解答只注意了B为非空集合,实际上,B=时,仍满足A∪B=A,当=0时,B=,符合题设,应补上,故正确答案为C={0,1,2}. 例13.已知集合,.若,则实数的取值范围是 . 思路启迪:先确定已知集合A和B. 解: 故实数的取值范围是. 例14. 已知集合A={x|x2+(m+2)x+1=0,x∈R},若A∩=,则实数m的取值范围是_________. 例15.已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若BA,则实数p的取值范围是________. 题型5.要注意利用数形结合解集合问题 集合问题大都比较抽象,解题时要尽可能借助文氏图、数轴或直角坐标系等工具将抽象问题直观化、形象化、明朗化,然后利用数形结合的思想方法使问题灵活直观地获解. 例16.设全集U={x|0<x<10,x∈N*},若A∩B={3},A∩CUB={1,5,7},CUA∩CUB={9},则集合A、B是________. 思路启迪:本题用推理的方法求解不如用文氏图,填图的方法来得简捷,由图不难看出. 解:A={1,3,5,7},B={2,3,4,6,8}. 例17.集合A={x|x2+5x-6≤0},B={x|x2+3x>0},求A∪B和A∩B. 解:∵ A={x|x2-5x-6≤0}={x|-6≤x≤1}, B={x|x2+3x>0}={x|x<-3,或x>0}. 如图所示, ∴ A∪B={x|-6≤x≤1}∪{x|x<-3,或x>0}=R. A∩B={x|-6≤x≤1}∩{x|x<-3,或x>0}={x|-6≤x<-3,或0<x≤1}. 例18.设A={x|-2<x<-1,或x>1},B={x|x2+x+b≤0},已知A∪B={x|x>-2},A∩B={x|1<x≤3},求、b的值. 【专题训练】 一.选择题: 1.设M={x|x2+x+2=0},=lg(lg10),则{}与M的关系是( ) A、{}=M B、M{} C、{}M D、M{} 2.已知全集=R,A={x|x-|<2},B={x|x-1|≥3},且A∩B=,则的取值范围是( ) A、 [0,2] B、(-2,2) C、(0,2] D、(0,2) 3.已知集合M={x|x=2-3+2,∈R},N={x|x=b2-b,b∈R},则M,N的关系是( ) A、 MN B、MN C、M=N D、不确定 4.设集合A={x|x∈Z且-10≤x≤-1},B={x|x∈Z,且|x|≤5},则A∪B中的元素个数是( ) A、11 B、10 C、16 D、15 5.集合M={1,2,3,4,5}的子集是( ) A、15 B、16 C、31 D、32 6 集合M={x|x=,k∈Z},N={x|x=,k∈Z},则( ) A M=N B MN  C MN D M∩N= 7 已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1}且B≠,若A∪B=A,则( ) A -3≤m≤4 B -3<m<4  C 2<m<4 D 2<m≤4 8.集合M=,且.则实数a的取值范围是( ) A. a-1 B. a1 C. a-1 D.a1 9.已知集合M={,}.P={-,2-1};若card(MP)=3,则MP= ( ) A.{-1} B.{1} C.{0} D.{3} 10.设集合P={3,4,5}.Q={4,5,6,7}.令P*Q=,则P*Q中元素的个数是 ( ) A. 3 B. 7 C. 10 D. 12 二.填空题: 11.已知M={},N={x|,则M∩N=__________. 12.非空集合p满足下列两个条件:(1)p{1,2,3,4,5},(2)若元素∈p,则6-∈p,则集合p个数是__________. 13.设A={1,2},B={x|xA}若用列举法表示,则集合B是 . 14.含有三个实数的集合可表示为,则 . 三.解答题: 15.设A={x|x2+px+q=0}≠,M={1,3,5,7,9},N={1,4,7,10},若A∩M=,A∩N=A,求p、q的值. 16. 已知集合M={y|y=x2+1,x∈R},N={y|y=x+1,x∈R},求M∩N. 17. 已知集合A={x|x2-3x+2=0},B={x|x2-mx+2=0},且A∩B=B,求实数m范围. 18.已知集合,且, ,求,b的值.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:高中必修一集合复习讲义.doc
    链接地址:https://www.zixin.com.cn/doc/10645012.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork