欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    船舶用燃料电池-锂电池混合动力系统协同控制策略.pdf

    • 资源ID:925372       资源大小:1.78MB        全文页数:4页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    VIP下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    船舶用燃料电池-锂电池混合动力系统协同控制策略.pdf

    1、第45卷第2 4期2023年1 2 月舰船科学技术SHIP SCIENCEAND TECHNOLOGYVol.45,No.24Dec.,2023船舶用燃料电池一锂电池混合动力系统协同控制策略董佳怡,李宗韬,王智慧1,陈旭冉2(1.上海杰宁新能源科技发展有限公司,上海2 0 0 444;2.上海海事大学,上海2 0 1 30 6)摘要:船舶用燃料电池锂电池混合动力系统是由燃料电池作为主电源,锂电池作为辅助电源。本文提出一种基于功率解耦的外部能效最大协同优化策略对混合能源进行输出功率分配,并与双闭环PI控制策略、传统外部能效最大化策略(EEMS)进行对比分析,以验证所提出协同控制策略的优越性。关键

    2、词:船舶;燃料电池;锂电池;协同优化;功率分配;EEMSVbus中图分类号:TK91文章编号:1 6 7 2-7 6 49(2 0 2 3)2 4-0 1 37-0 4Collaborative control strategy for fuel cell-lithium battery hybrid system of marine(1.Shanghai Jening New Energy Technology Development Co.,Ltd.,Shanghai 200444,China;Abstract:The fuel cell-lithium battery hybrid sh

    3、ip uses fuel cells as the main power source and batteries as the auxili-ary power source.An external energy efficiency maximum collaborative optimization strategy based on power decoupling isproposed to allocate the power output of hybrid energy,and it is compared with the double closed loop PI cont

    4、rol strategyand the traditional external energy efficiency maximization strategy(EEM S)t o v e r i f y t h e s u p e r i o r i t y o f t h e p r o p o s e d c o l-laborative control strategy.Key words:ship;fuel cell;lithium battery;collaborative optimization;power allocation;EEMS0引言1船用多能能源系统拓扑结构船舶在航

    5、运过程中的污染排放对环境有着很大的本文采用燃料电池+锂电池混合多能源系统,通过影响。质子交换膜燃料电池(PEMFC)具有零排放、双向DC-DC变换器和单相BoostDC-DC变换器分别把相对较高的功率密度和快速启动特性,较适合低功燃料电池和锂电池连接到母线上,混合动力系统拓扑率船能源系统,如小型游艇或客船。为满足船舶运行结构如图1 所示。工况需求,提出燃料电池+锂电池混合动力作为船用能源系统。对于船用氢燃料电池+锂电池混合多能源系统,需要采用能量协同优化策略进行功率分配,满足船舶负荷需求。针对船舶应用场景,采用氢燃料电池为主,锂电电池为辅混合多能源系统,需要采取新的能量协同优化策略。为此,本文

    6、提出一种基于功率解耦的外部能效最大化策略,以满足船舶多能源系统供能的协同优化与能量管理。收稿日期:2 0 2 3-0 9-0 4基金项目:上海市工业强基项目(GYQJ-2020-1-12)作者简介:董佳怡(1 9 9 4-),女,硕士,研究方向为燃料电池。文献标识码:ADONG Jia-yil,LI Zong-tao,WANG Zhi-hui,CHEN Xu-ran?2.Shanghai Maritime University,Shanghai 201306,China)DC-DCPfe能量管理策略(EMS)图1 混合动力系统拓扑结构图Fig.1Topological structure of

    7、 hybrid systemdoi:10.3404/j.issn.1672-7649.2023.24.025PiodDC-DC138图中,Vbus为母线电压;Pload为负载功率;Pfc为燃料电池功率。本文以Alsterwasser燃料电池客船为例,其主要设计参数为:船长2 5.56 m,宽5.4m,最高速度1 4km/h,乘客1 0 0 名,典型工况下负载平均需求功率43.6 kW,最大功率1 1 2 kW。2动力源建模2.1燃料电池模型根据船舶用能需求和负荷特性,采用基于半经验模型并通过相应公式进行扩展得到的燃料电池数学模型,如图2 所示。R图2 燃料电池数学模型Fig.2 Mathema

    8、tical model of fuel cells燃料电池堆电压:Vstack=nVell,Vstack=n(ENernst+Ea c t +Eo h m+Ec o n)。式中:n为串联的单堆燃料电池个数;Vcel为单堆燃料电池电压;ENernst为能斯特电压;Eact、Eo h mEc o n 分别为活化损失、欧姆损失和浓度损失。不同温度下,能斯特电压计算如下式:ENernst=(T-To)-mFmFRT式中:Agixn为特定反应的摩尔标准态自由能变化;m为转移的电子数;F为法拉第常数;s为标准摩尔熵变;T为燃料电池工作温度;To为标准状态温度,R为通用气体常数;PH,为氢分压,PO,为氧分

    9、压。活化损耗计算如下式:AEact=$1+2 T+3 T1-(n(co,)+4T1(ln()。(4)式中:5i1、52、$3和$4为经验常数;Ti为温度;co,为阴极膜与气体界面处的氧浓度;催化剂表面阴极侧的有效氧浓度。欧姆损耗计算:AEohm=-I Rohmic=-I(Rproton+Relect)。发生在高电流强度下,浓度损失可通过近似计算:ECo n =B n(1(6)lim/A)式中:B为经验常数;I为电流;lim为极限电流;A为舰船科学技术膜有效面积。2.2锂电池模型根据船用环境,采用改进的Shepherd模型。在Shepherd模型中,通过考虑非线性电压特性和串联内阻,电池被描述为

    10、类似于Rint模型。Tremblay2 改进了Shepherd模型,如图3所示。控制电压源E=E,-KHi(tdtli-Ni+AeOmodRohmie图3锂电池模型WFig.3 Model of lithium batteryVVsick青E+1/A第45卷内阻+4V改进Shepherd模型由一个可控电压源和一个内阻组成。模型中参数E表示电池单元的电位,计算如下:QE=E,-KJi-Ni+Ae-8iodrQ-fi(t)dt)电池的端电压计算:Vbatt=E-lbattRinto式中:E,为恒定电位;K为极化常数;Q为活性物质(1)的量;i为电流密度;Ji(t)dt为电池提供的电量;N为(2)内

    11、阻;A和B均为经验常数。该模型模拟电池非典型放电曲线,如图4所示。首先,终端电压呈指数下降,然后在标称范围内出现几乎恒定的下降。在公称范围之后,放电曲线再次急剧下降。80(3)E706050080出70600图4放电特性仿真曲线Fig.4Simulation curve of discharge characteristic(5)3多能协同优化策略3.1双闭环PI控制策略燃料电池采用双闭环PI控制,使输出保持动态平衡,整体策略如图5所示。(7)(8)电流放电特性曲线额定区域指定域2040容量/Ah(a)额定电流2040容量/Ah(b)不同电流60608020A80A80100100第45卷SO

    12、C-PIPiodFig.5 Structure of PI control strategy锂电池SOC估算常用库仑计数法,计算如下B:SOC(t)=SOCo+SO C=SO Co-nb,col.100。Q式中:SOCo为电荷的初始状态;SOC为在T(%)期间SoC的变化;nb.col为库仑效率;T为运行时间;Ibat为时间步长电池的平均电流(放电为正,充电为负);Q为电池容量。3.2传统外部能效最大化策略外部能效最大化策略(EEMS)旨在最大限度地减少氢燃料消耗,通过在SOC正常范围内提高锂电池能量利用率。控制策略结构如图6 所示。SOC-EEMSAPPFcrefVd一优化算法Piod图6

    13、传统外部能效最大化策略结构Fig.6 Structure of traditional energy efficiency strategy优化问题定义如下:x=PFC,V,其中x为最优解,G为成本函数。G=PFcT+Q b a t t l 。(10)式中:G为指在给定的间隔时间内外部能源提供的能量;Qbatt为锂电池的容量。成本函数的求解在不等式范围内:PFcT (So C-So Cmi n)VFCr Q FC。式中;T为一个采样时间;VFcr和QFc分别为额定燃料电池电压和容量。在边界状态下:PFCminPFcPFCmaxVdcmin-VdeV Vd c m a x-Vd c o式中,Vd

    14、cmin和Vdcmax分别为最小和最大直流总线电压。EEMS优化算法的输出是燃料电池参考功率和锂电池充电/放电电压。从负载功率中减去锂电池参考功率,以获得燃料电池参考功率。锂电池充电/放电电压添加直流母线电压参考值,以强制锂电池系统充电或放电。直流母线电压由燃料电池转换器控制。3.3改进外部能效最大化策略为使混合多能系统能效最优化,让不同供能能够协同提供能量,提出基于功率解耦的外部能效最大化策略(改进EEMS)。在原有控制基础之上加人功率董佳怡,等:船舶用燃料电池一锂电池混合动力系统协同控制策略PFCrefxref图5双闭环PI控制策略结构Jo bai 0)dtAV:139.bat boost

    15、解耦环节,能够对负荷所需功率,更加准确地分配给Vde厂电压调节器Vaerer电压调节器燃料电池和锂电池,整体策略如图7 所示。batt buck*PiodSOCEEMSVd优化算法(9)图7 改进外部能效最大化策略结构Fig.7 Structure of improved energy efficiency strategy采用BERNARDJ等 5 开发的一种类似于的离线优化算法,在给定负载曲线下可以实现最小的燃料消耗,同时保持电池SOC在其限制范围内,如图8 所示。PloadSOC离线优化算法SOCmin图8 离线优化算法batt boostFig.8Offline optimizatio

    16、n algorithmbat buck*该算法以电池SOC的初始值和最小值作为负载曲线的输人,输出是所需的最低燃料消耗。求最优解:x=Pfc(1),Pfc(2),.,Pfc(n),H=k=1在不等式约束下:y(k+1)(S OCo-SOCmin)VbattrQ,n(11)k=1y(k+1)=y(k)+(Ploaa(k)-Pfc(k)AT(k=1,2,3,.,n)。在边界条件内:(12)PfeminPfePfemaxo(13)式中:n为样本数;T,为负载曲线持续时间。y(k)是k个样本后的电池能量,H为整个负载曲线所需的燃料电池总能量。最小化H意味着最小化燃料电池的净容量,因此Hz消耗量最小。离

    17、线优化算法输出最优燃料电池功率(xopt)。由燃料电池极化曲线导出的查找表,得到最优燃料电池电流(),并且最佳燃料消耗计算如下:ConsH,opt式中:F为法拉第常数;N为燃料电池数量。功率解FCre耦AVd电压调节器Vr-opt极化特性PEMFCiopt曲线nNnk=1IrcrerfIhoat oostLbant bucksConsH2opt(14)(15)(16)(17)(18)(19)(20)1404仿真分析4.1负荷需求曲线船舶典型工况下,负荷需求曲线如图9 所示。12.00010.0008000600040002.0000050100150200250 300350时间/s图9 船舶

    18、典型工况Fig.9 Typical operating conditions of ships4.2典型工况和不同控制策略下输出功率比较分析从图1 0 可以看出,在不同负荷需求下,3种控制策略都能够有效控制能量分配。在停港和离港时,负载波动剧烈,混合动力系统在不同控制策略下能够快速满足负载的波动,同时母线段并联的电容器,其端电压和母线相同,也能够有效补偿负载的峰值功率和提高电源的瞬时功率,在靠岸时系统负载需求功率较小,此时燃料电池的输出功率能为锂电池进行充电,储存过剩的能量。通过对比改进EEMS比双闭环PI控制和传统EEMS得到的燃料电池输出功率波动更小,曲线更平滑。4.3典型工况和不同控制策

    19、略下燃料消耗情况比较分析由图1 1 可知,在相同条件下,船舶在不同控制策9000800070006000500040003000200010000-1000050100150200250300350时间/s6000500040003000200010000-1000050100 150200250300350时间/s图1 0 不同策略下燃料电池和锂电池的输出功率Fig.10 Output power of fuel cell and lithium batteries underdifferent strategies舰船科学技术略下氢燃料消耗量的变化范围。在350 s时,双闭环PI控制、EE

    20、MS和改进EEMS等控制策略下氢燃料消耗量为57.9 7 g、55.0 2 g、48.9 2 g。对EEMS进行改进,增加功率解耦环节。从图1 1可以看出,改进EEMS在保证混合动力系统稳定的同时能够使得辅助电源出力最大化和改善系统的鲁棒性,从而利用混合动力系统的特点,提高燃料经济性。-PI50EEMS改进EEMS/鲁鲜影H4030201000Fig.11 Hydrogen fuel consumption and theSOC of lithium battery对于锂电池的荷电状态,锂电池的初始状态是75%,经过整个循环工况后,电池的荷电状态仍可保持在6 5%以上,变化范围在1 0%以内。

    21、5结语本文提出了应用于燃料电池船舶混合动力系统的一种基于功率解耦的外部能效最大协同优化策略,在船舶典型工况下,能够对船用多能源系统进行能量协同优化和功率分配,具有更强的鲁棒性。同时,可有效降低燃料电池的氢气消耗量,提高系统燃料经济性,PIEEMS改进EEMSPIEEMS改进EEMS第45卷50100150200250300350时间/s图1 1 氢燃料消耗量使得燃料电池船舶混合动力系统总体高效运行。参考文献:1 HANJ,CHARPENTIER J F,TANG T.An energy manage-ment system of a fuel cell/battery hybrid boatJ

    22、.Energies,2014,7(5):2799-2820.2 TREMBLAY O,DESSAINT LA,et al,A generic batterymodel for the dynamic simulation of hybrid electricvehiclesCJ/In:2007 IEEE V ehicle Power and PropulsionConference,284-289,IEEE,9/9/2007-9/12/2007.3 ZHANG Y,SONG W,et al.A novel model of the initial stateof charge estimati

    23、on for LiFePO4 batteriesJ Journal of PowerSources,2014:1028-1033.4S N MOTAPON,L A DESSAINT,K AL-HADDAD.A robustH2-consumption-minimization-based energy management strat-egy for a fuel cell hybrid emergency power system of more elec-tric aircrafCJ/IEEE Transactions on Industrial Electronics,2014,61(11):6148-6158.5 J BERNARD,S DELPRAT,F BUECHI,et al.,Global optimi-sation in the power management of a fuel cell hybrid vehicle(FCHV)JJ.INProc.IEEE VPPC,2006(9):1-6.


    注意事项

    本文(船舶用燃料电池-锂电池混合动力系统协同控制策略.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png