欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    机械类外文翻译变速箱噪音英语论文.doc

    • 资源ID:829342       资源大小:77.50KB        全文页数:14页
    • 资源格式: DOC        下载积分:11金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要11金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    开通VIP
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    机械类外文翻译变速箱噪音英语论文.doc

    1、Gearbox NoiseCorrelation with Transmission Error and Influence of Bearing PreloadDoctoral Thesis in Machine DesignTRITA-MMK 2008:19ISSN 1400-1179ISRN/KTH/MMK/R-08/19-SEDepartment of Machine DesignRoyal institute of TechnologySE100 44 Stockholm, Sweeden Mats kerblom 2008ABSTRACTThe five appended pape

    2、rs all deal with gearbox noise and vibration. The first paper presents a review of previously published literature on gearbox noise and vibration.The second paper describes a test rig that was specially designed and built for noise testing of gears. Finite element analysis was used to predict the dy

    3、namic properties of the test rig, and experimental modal analysis of the gearbox housing was used to verify the theoretical predictions of natural frequencies.In the third paper, the influence of gear finishing method and gear deviations on gearbox noise is investigated in what is primarily an exper

    4、imental study. Eleven test gear pairs were manufactured using three different finishing methods. Transmission error, which is considered to be an important excitation mechanism for gear noise, was measured as well as predicted. The test rig was used to measure gearbox noise and vibration for the dif

    5、ferent test gear pairs. The measured noise and vibration levels were compared with the predicted and measured transmission error. Most of the experimental results can be interpreted in terms of measured and predicted transmission error. However, it does not seem possible to identify one single param

    6、eter,such as measured peak-to-peak transmission error, that can be directly related to measured noise and vibration. The measurements also show that disassembly and reassembly of the gearbox with the same gear pair can change the levels of measured noise and vibration considerably.This finding indic

    7、ates that other factors besides the gears affect gear noise.In the fourth paper, the influence of bearing endplay or preload on gearbox noise and vibration is investigated. Vibration measurements were carried out at torque levels of 140 Nm and 400Nm, with 0.15 mm and 0 mm bearing endplay, and with 0

    8、.15 mm bearing preload. The results show that the bearing endplay and preload influence the gearbox vibrations. With preloaded bearings, the vibrations increase at speeds over 2000 rpm and decrease at speeds below 2000 rpm, compared with bearings with endplay. Finite element simulations show the sam

    9、e tendencies as the measurements.The fifth paper describes how gearbox noise is reduced by optimizing the gear geometry for decreased transmission error. Robustness with respect to gear deviations and varying torque is considered in order to find a gear geometry giving low noise in an appropriate to

    10、rque range despite deviations from the nominal geometry due to manufacturing tolerances. Static and dynamic transmission error, noise, and housing vibrations were measured. The correlation between dynamic transmission error, housing vibrations and noise was investigated in speed sweeps from 500 to 2

    11、500 rpm at constant torque. No correlation was found between dynamic transmission error and noise. Static loaded transmission error seems to be correlated with the ability of the gear pair to excite vibration in the gearbox dynamic system.Keywords: gear, gearbox, noise, vibration, transmission error

    12、, bearing preload.ACKNOWLEDGEMENTSThis work was carried out at Volvo Construction Equipment in Eskilstuna and at the Department of Machine Design at the Royal Institute of Technology (KTH) in Stockholm. The work was initiated by Professor Jack Samuelsson (Volvo and KTH), Professor Sren Andersson (KT

    13、H), and Dr. Lars Brthe (Volvo).The financial support of the Swedish Foundation for Strategic Research and the Swedish Agency for Innovation Systems VINNOVA is gratefully acknowledged. Volvo Construction Equipment is acknowledged for giving me the opportunity to devote time to this work.Professor Sre

    14、n Andersson is gratefully acknowledged for excellent guidance and encouragement.I also wish to express my appreciation to my colleagues at the Department of Machine Design, and especially to Dr. Ulf Sellgren for performing simulations and contributing to the writing of Paper D, and Dr. Stefan Bjrklu

    15、nd for performing surface finish measurements.The contributions to Paper C by Dr. Mikael Prssinen are highly appreciated. All contributionsto this work by colleagues at Volvo are gratefully appreciated.1 INTRODUCTION1.1 BackgroundNoise is increasingly considered an environmental issue. This belief i

    16、s reflected in demands for lower noise levels in many areas of society, including the working environment. Employees spend a lot of time in this environment and noise can lead not only to hearing impairment but also to decreased ability to concentrate, resulting in decreased productivity and an incr

    17、eased risk of accidents. Quality, too, has become increasingly important. The quality of a product can be defined as its ability to fulfill customers demands. These demands often change over time, and the best competitors in the market will set the standard.Noise concerns are also expressed in relat

    18、ion to construction machinery such as wheel loaders and articulated haulers. The gearbox is sometimes the dominant source of noise in these machines.Even if the gear noise is not the loudest source, its pure high frequency tone is easily distinguished from other noise sources and is often perceived

    19、as unpleasant. The noise creates an impression of poor quality. In order not to be heard, gear noise must be at least 15 dB lower than other noise sources, such as engine noise.1.2 Gear noiseThis dissertation deals with the kind of gearbox noise that is generated by gears under load.This noise is of

    20、ten referred to as “gear whine” and consists mainly of pure tones at high frequencies corresponding to the gear mesh frequency and multiples thereof, which are known as harmonics. A tone with the same frequency as the gear mesh frequency is designated the gear mesh harmonic, a tone with a frequency

    21、twice the gear mesh frequency is designated the second harmonic, and so on. The term “gear mesh harmonics” refers to all multiples of the gear mesh frequency.Transmission error (TE) is considered an important excitation mechanism for gear whine. Welbourn 1 defines transmission error as “the differen

    22、ce between the actual position of the output gear and the position it would occupy if the gear drive were perfectly conjugate.” Transmission error may be expressed as angular displacement or as linear displacement at the pitch point. Transmission error is caused by deflections, geometric errors, and

    23、 geometric modifications.In addition to gear whine, other possible noise-generating mechanisms in gearboxes include gear rattle from gears running against each other without load, and noise generated by bearings.In the case of automatic gearboxes, noise can also be generated by internal oil pumps an

    24、d by clutches. None of these mechanisms are dealt with in this work, and from now on “gear noise” or “gearbox noise” refers to “gear whine”. MackAldener 2 describes the noise generation process from a gearbox as consisting of three parts: excitation, transmission, and radiation. The origin of the no

    25、ise is the gear mesh, in which vibrations are created (excitation), mainly due to transmission error. The vibrations are transmitted via the gears, shafts, and bearings to the housing (transmission). The housing vibrates, creating pressure variations in the surrounding air that are perceived as nois

    26、e (radiation).Gear noise can be affected by changing any one of these three mechanisms. This dissertation deals mainly with excitation, but transmission is also discussed in the section of the literature survey concerning dynamic models, and in the modal analysis of the test gearbox in Paper B. Tran

    27、smission of vibrations is also investigated in Paper D, which deals with the influence of bearing endplay or preload on gearbox noise. Differences in bearing preload influence a bearings dynamic properties like stiffness and damping. These properties also affect the vibration of the gearbox housing.

    28、1.3 ObjectiveThe objective of this dissertation is to contribute to knowledge about gearbox noise. The following specific areas will be the focus of this study:1. The influence of gear finishing method and gear modifications and errors on noise and vibration from a gearbox.2. The correlation between

    29、 gear deviations, predicted transmission error, measured transmission error, and gearbox noise.3. The influence of bearing preload on gearbox noise.4. Optimization of gear geometry for low transmission error, taking into consideration robustness with respect to torque and manufacturing tolerances.2

    30、AN INDUSTRIAL APPLICATION TRANSMISSION NOISE REDUCTION2.1 IntroductionThis section briefly describes the activities involved in reducing gear noise from a wheel loader transmission. The aim is to show how the optimization of the gear geometry described in Paper E is used in an industrial application

    31、. The author was project manager for the “noise work team” and performed the gear optimization.One of the requirements when developing a new automatic power transmission for a wheel loader was improving the transmission gear noise. The existing power transmission was known to be noisy. When driving

    32、at high speed in fourth gear, a high frequency gear-whine could be heard. Thus there were now demands for improved sound quality. The transmission is a typical wheel loader power transmission, consisting of a torque converter, a gearbox with four forward speeds and four reverse speeds, and a dropbox

    33、 partly integrated with the gearbox.The dropbox is a chain of four gears transferring the powerto the output shaft. The gears are engaged by wet multi-disc clutches actuated by the transmission hydraulic and control system. 2.2 Gear noise target for the new transmissionExperience has shown that the

    34、high frequency gear noise should be at least 15 dB below other noise sources such as the engine in order not to be perceived as disturbing or unpleasant.Measurements showed that if the gear noise could be decreased by 10 dB, this criterion should be satisfied with some margin. Frequency analysis of

    35、the noise measured in the drivers cab showed that the dominant noise from the transmission originated from the dropbox gears. The goal for transmission noise was thus formulated as follows: “The gear noise (sound pressure level) from the dropbox gears in the transmission should be decreased by 10 dB

    36、 compared to the existing transmission in order not to be perceived as unpleasant. It was assumed that it would be necessary to make changes to both the gears and the transmission housing in order to decrease the gear noise sound pressure level by 10 dB.2.3 Noise and vibration measurementsIn order t

    37、o establish a reference for the new transmission, noise and vibration were measured for the existing transmission. The transmission is driven by the same type of diesel engine used in a wheel loader. The engine and transmission are attached to the stand using the same rubber mounts that are used in

    38、a wheel loader in order to make the installation as similar as possible to the installation in a wheel loader. The output shaft is braked using an electrical brake.2.4 Optimization of gearsNoise-optimized dropbox gears were designed by choosing macro- and microgeometries giving lower transmission er

    39、ror than the original (reference) gears. The gear geometry was chosen to yield a low transmission error for the relevant torque range, while also taking into consideration variations in the microgeometry due to manufacturing tolerances. The optimization of one gear pair is described in more detail i

    40、n Paper E.Transmission error is considered an important excitation mechanism for gear whine. Welbourn 1 defines it as “the difference between the actual position of the output gear and the position it would occupy if the gear drive were perfectly conjugate.” In this project the aim was to reduce the

    41、 maximum predicted transmission error amplitude at gear mesh frequency (first harmonic of gear mesh frequency) to less than 50% of the value for the reference gear pair. The first harmonic of transmission error is the amplitude of the part of the total transmission error that varies with a frequency

    42、 equal to the gear mesh frequency. A torque range of100 to 500 Nm was chosen because this is the torque interval in which the gear pair generates noise in its design application. According to Welbourn 1, a 50% reduction in transmission error can be expected to reduce gearbox noise by 6 dB (sound pre

    43、ssure level, SPL). Transmission error was calculated using the LDP software (Load Distribution Program) developed at the Gear Laboratory at Ohio State University 3.The “optimization” was not strictly mathematical. The design was optimized by calculating the transmission error for different geometrie

    44、s, and then choosing a geometry that seemed to be a good compromise, considering not only the transmission error, but also factors such asstrength, losses, weight, cost, axial forces on bearings, and manufacturing.When choosing microgeometric modifications and tolerances, it is important to take man

    45、ufacturing options and cost into consideration. The goal was to use the same finishing method for the optimized gears as for the reference gears, namely grinding using a KAPP VAS 531 and CBN-coated grinding wheels.For a specific torque and gear macrogeometry, it is possible to define a gear microgeo

    46、metry that minimizes transmission error. For example, at no load, if there are no pitch errors and no other geometrical deviations, the shape of the gear teeth should be true involute, without modifications like tip relief or involute crowning. For a specific torque, the geometry of the gear should

    47、be designed in such a way that it compensates for the differences in deflection related to stiffness variations in the gear mesh. However, even if it is possible to define the optimal gear microgeometry, it may not be possible to manufacture it, given the limitations of gear machining. Consideration

    48、 must also be given to how to specify the gear geometry in drawings and how to measure the gear in an inspection machine. In many applications there is also a torque range over which the transmission error should be minimized. Given that manufacturing tolerances are inevitable, and that a demand for

    49、 smaller tolerances leads to higher manufacturing costs, it is important that gears be robust. In other words, the important characteristics, in this case transmission error, must not vary much when the torque is varied or when the microgeometry of the gear teeth varies due to manufacturing tolerances.LDP 3 was used to calculate the transmission error for the reference and optimized gear pair at different torque levels. The robustness function in LDP was used to analyze the sensitivity


    注意事项

    本文(机械类外文翻译变速箱噪音英语论文.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png