欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    太阳能水层交换装置设计与试验.pdf

    • 资源ID:718470       资源大小:1.65MB        全文页数:8页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    开通VIP
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    太阳能水层交换装置设计与试验.pdf

    1、第 50 卷第 4 期渔 业 现 代 化Vol.50 No.42023 年 8 月FISHERY MODERNIZATIONAug.2023DOI:10.3969/j.issn.1007-9580.2023.04.006收稿日期:2022-12-28基金项目:国家重点研发计划蓝色粮仓科技创新专项(2020YFD0900502);长江流域生态修复试点示范(2022LKY003)作者简介:陈晓龙(1989),男,硕士,助理研究员,研究方向:渔业装备研发与渔业工程,E-mail:chenxiaolong 通信作者:车轩(1981),男,硕士,研究员,研究方向:渔业水域生态修复工程,E-mail:ch

    2、exuan 太阳能水层交换装置设计与试验陈晓龙,车 轩,刘兴国,田昌凤,王小冬,李新丰(中国水产科学研究院渔业机械仪器研究所,农业农村部渔业装备与工程技术重点实验室,上海 200092)摘要:随着中国经济的迅猛发展,来自工业、农业和生活的污水不断增多,渔业水域生态环境受到不同程度污染,生态系统健康受到影响。国内外广大学者为此开展了众多关于渔业水域生态修复方面的研究,但缺乏渔业水域生态修复的设备可供利用。研发了一套太阳能水层交换装置,通过曝气的方式推动水体流动,实现上下水层交换,促进有机污染物的有氧降解、净化水质,为沉水植物的生长提供适宜环境,改善不同水域之间的生态联系。该设备以太阳能为动力,全

    3、自动定时循环启动,具有结构简单、曝气时间长、动力效率高等特点。2022 年 9 月连续测定试验河道水体中水质状况,分析了太阳能水层交换装置对河道水动力、溶氧含量、氮磷含量的影响。结果显示:该装置每天平均工作时长达 8 h,设备周围水体总氮、总磷和氨氮分别与同时期对照组相比降低 29.02%、31.25%、62.12%,安装设备的水体中溶氧明显提高,河道中水流流速增加 2 倍以上,上下水层交换效果明显。研究表明,太阳能水层交换装置有效解决了河道水流流通性不畅等问题,改善了水体环境,对河道水体的生态恢复有积极作用。关键词:太阳能;水层交换;曝气增氧;水体流动;生态修复中图分类号:S951;S237

    4、 文献标志码:A 文章编号:1007-9580(2023)04-0051-008 随着中国经济的快速发展,产生的污水也越来越多,但由于这些污、废水未能及时进行处理而排放,导致水体多种生态功能退化1-2。因此,为了改善水域环境,实现上下水层交换,往往会在水域中安装各种设备来提高水中的溶氧含量,满足微生物生长所需要的溶氧,从而增加水域透明度3-5。在水处理工艺中,大多数采用曝气增氧的方法进行水层交换,既可以达到增氧的目的,又可以促进水层交换,推动水体流动6-8。其主要通过空压机或风机对管道中充入一定压力的空气,空气经输送管道送至水体底层,通过空气与水体的接触来增加水体溶氧9-11。同时又可推动水体

    5、流动,使底层的水向上抬升,再由表层中心缓慢向外推开,形成大范围的立体水流,使整个水体有机会与空气接触,在阳光的照射下,浮游植物在水体中释放氧气,使上层水体和底层水体不断进行交换、混合,提高整个水体溶氧,分解水体中亚硝酸盐氮、氨氮、有机沉淀物等有害物质,形成良性循环12-14。可减少水体内底泥带来的污染,杜绝藻类过度生长以及减少有机物堆积的条件,从而阻断内源污染15-16,达到净化水质的目的。目前,水环境治理中常用的水层交换装置主要有鼓风式、机械式和推流式17-19。宋奔奔等20设计的管式曝气装置,其顶部设置进气口,通过内部设置的文丘里管将空气吸入,水体混合后快速排入养殖池内。但当气水混合不均匀

    6、时,容易造成堵塞、水压不稳的现场。赵庆习21通过对曝气装置的螺旋杆机构的参数分析优化,设计了一种水下推流曝气装置,但仅通过理论计算,并未通过实际验证,效果无法真正得到评估。周志强等22针对现有技术存在的缺陷和不足,设计了一种曝气效果好、集成性高、结构紧凑、灵活性高、美观的可移动式旋流太阳能曝气装置。该装置采用全自动化控制,并安装远程控制装置,大大降低了运营成本及管理成本,但制作成本高,野外工作稳定性有待提高。徐璟等23通过分析不同型号曝气头对曝气装置性能的影响,设计研制了高性能的曝气装置。但其工作环境受限,安装成本较高,无法渔 业 现 代 化2023 年应用于池塘及大水面环境中。本研究设计了一

    7、种太阳能水层交换装置,可应用于大水面生态修复,也可用于养殖池塘中。其动力来源于太阳能,曝气时间可根据需要自行设定,制作成本低(修复单位水体的成本仅为 10元/m2),曝气量大,动力效率高,推水作用明显。该设备的研制可为大水面生态修复及养殖池塘的水质改良提供技术参考。1 总体方案及主要技术指标1.1 原理及结构根据水域环境改善的要求,通过设备推动水体流动,实现试验水域上下水层交换,从而达到增氧、改善水质的目的。太阳能水层交换装置主要由蓄电池、太阳能供电模块、控制系统、曝气盘、曝气管、风机、安装支架和浮船组成,如图 1 所示。太阳能板通过支架安装在河道岸边,蓄电池及控制系统放置于控制箱内,控制箱安

    8、装于太阳能板下方,既可以避雨,又可以防止暴晒;风机安装于风机支架上,和控制箱一同放置于太阳能板下方;两条浮船通过螺栓固定在机架顶部,为曝气装置提供浮力;曝气盘安装固定在机架底部,其完全沉没在水中,根据曝气深度调节曝气盘深度。图 1 太阳能水层交换装置结构示意图Fig.1 structural diagram of upper and lower water layer exchange device 太阳能水层交换装置通过太阳能板为整个装置提供动力来源,通过太阳能控制器为蓄电池充电,蓄电池可存储多余电能,为整套装置在太阳能板能量不足时提供电能。控制系统主要包含太阳能控制器、电机控制器和开关定时

    9、器。太阳能控制器主要控制整套系统的电能充放及通断,电机控制器主要控制风机的启停,开关定时器主要控制风机的运行时间。风机提供压缩的空气,通过曝气软管送入装置底部的曝气盘,曝气盘上均匀分布大小相同的小型气孔,在风机的作用下将空气扩散到水中,同时曝气后的水体通过挡水板将水体推动向前,从而保持水体流动,进一步净化水体。1.2 设计技术要求根据河湖生态修复技术规范,结合示范区水域的地形、地貌、流速和进出口水质等自然条件,确定设计应满足的主要技术指标:水处理量 8 000 t/d,溶氧量5 mg/L,风量 80 m3/h,功率 0.37 kW,推水流速0.3 m/s,最大噪声 70 dB,日使用时间8 h

    10、。2 关键结构设计2.1 曝气量计算曝气量按照公式24(1)计算:R=Q(C2-C1)T(1)式中:R 为需氧量,g/h;Q为设计进水量,t/d;C1为进水溶氧,mg/L;C2为设计溶氧,mg/L;为氧转移修正系数,渔业水域一般取 0.95;为氧溶解校正系数,渔业水域一般取 0.97;为压力校正系数;取 1;T 为每天曝气时间,按照每天工作 8 h计算。25第 4 期陈晓龙等:太阳能水层交换装置设计与试验根据上式计算需氧量后,再转化单位计算出曝气量为 3 038 L/h。而氧气利用率为 20%,氧气在空气中占比 21%,则曝气量为 72 330 L/h72 m3/h。曝气风机需取10%的余量,

    11、即风机风量Q 为 80 m3/h。2.2 风机功率计算按照曝气风量计算电机功率25为:P=QP3 600 1 000 0 1(2)式中:Q 为风量,m3/h;P为风机的全风压,Pa;0为风机的效率系数,一般取 0.750.85;1为机械效率系数。根据以上公式,电机全风压选 10 000 Pa;此为小风机,0=0.75;根据机械设计手册26,风机与电机直连,1=1。因此曝气风量电机功率为 0.33 kW。根据现有旋涡风机电机型号,因此选择旋涡风机为 48 V、0.37 kW、80 m3/h,最大负压 10 kPa,最大正压 13 kPa 的直流漩涡风机。2.3 曝气盘计算曝气盘工作时对动力消耗的

    12、影响较大,水深、孔径和阻力损失是其最主要的因素27。管道阻力一般为 0.5 m,因此水深越小损失占比越大,而增加孔径有利于降低阻力损失。因此,对水深和孔径需要有精确的设计来满足曝气盘最大的增氧效率。根据行业标准 SC/T 60091999增氧机增氧能力试验方法28中的试验方法,测得不同曝气深度的增氧能力和动力效率曲线如图 2 所示。m(kg/(kWh)O2(kg/h)0.55 0.87 1.19 1.51 1.835.04.54.03.53.02.52.01.51.00.50.05.04.54.03.53.02.52.01.51.00.50.0图 2 不同水深时的增氧能力和动力效率Fig.2

    13、Oxygen increasing and power efficiency capacity at different water injection depths可以看出曝气机的增氧能力随着水深的增加而增加,而当需氧量为 4 000 g/h 时,曝气盘所在水深约为 1.5 m。同时可以看出电机的动力效率随着水深的增加而增大,但在 1.5 m 水深后,动力效率明显减缓。因此,选择曝气深度为 1.5 m 最为合理。由于孔径对曝气效率有较大影响,现对孔径进行设计计算。当曝气盘较深时,空气在水中的停留时间更长,增氧能力相对较大,同时所需要的动力也要求较强。但孔径较大时,空气浮力较大,在水中的停留时

    14、间较短,导致氧的转移效率减小;而孔径过小,阻力急剧增大,动力效率减小。因此,当曝气盘所置水深确定后,需要设计出合理孔径,以达到最大增氧效率。根据气体在水中氧转移有关理论29,得到:Ng=1 000 M0m -C()1-exp-6KL1 000 kd()RTlnP0+9 800(H+hp+hA)P0(3)式中:Ng为将空气增压需要的功率,W;M0为水体需氧量,kg/s;m 为标准大气压下 1 mol 气体的体积,L/mol;R 为气体常数,J/(molK);T 为开尔文温度,K;P0为标准大气压,Pa;P1为增压后的压力,Pa。为体积修正系数;C 为水体中初始溶氧含量,mg/L;为单位容积的空气

    15、含氧量,kg/m3;为饱和溶氧含量计算系数;KL为氧传质系数,m/s;为比表面积修正系数;k 为气泡直径与曝气器的孔径之比;H 为水深,m;hp为管道系统阻力损失,m;hA为曝气器阻力损失,m。孔径与 Ng的关系如图 3 所示。m0 50 100 150 200 250 3002.52.01.51.00.50.0Ng图 3 孔径与 Ng的关系Fig.3 Relationship between aperture and Ng35渔 业 现 代 化2023 年由于 d 为孔径的大小,再对 d 求导可得到使曝气功率最小的孔径 d0。由于存在最优的孔径使功率最小,并且功率是随着孔径的变化而变化。由于

    16、方程过于复杂,可利用数字带入法汇总大致曲线图,可以看出最优孔径在 50 m 左右。综上所述,曝气盘深度为水下 1.5 m,孔径设置为 50 m 作为本曝气盘的设计参数。2.4 控制系统设计如图 4 所示,太阳能曝气装置采用定时自动控制的方式,系统由太阳能控制器、时钟控制开关、电机控制器、无线接收模块组成。图 4 控制系统线路结构示意图Fig.4 Schematic diagram of control system circuit structure 太阳能板采用 4 块 250 W、24 V 串并联组成48 V、1 000 W 的充电电源。采用 48 V、60 Ah 的磷酸铁锂电池作为蓄电池

    17、,为设备提供储能电源;曝气风机采用 48 V、370 W 直流无刷电机。太阳能板接收太阳照射后,通过太阳能控制器给蓄电池充电,曝气风机通过电机控制器连接到时钟控制开关,最终再通过太阳能控制器连接到供电电源上。蓄电池通过空气开关连接在太阳能控制器为整套设备提供电能。工作时,当太阳强度照射太阳能板,其达到设定电压时,太阳能可以连续不断地给蓄电池充电,同时蓄电池为曝气机提供动力。而太阳能控制器主要控制整套设备的充放电,当长时间未充电或放电过量导致电源电压低于 36 V 时,电池低压保护将会启动,输出会切断,同时,电池的标志和警告显现,需增加充电电流以及充电时间,充电将再次启动。当电池电压超过38 V

    18、 时,保护功能将会关闭,为负载提供的输出将会重新工作。而由于天气原因太阳能未能及时充电导致蓄电池低于 38 V 时,蓄电池禁止输出从而保护蓄电池及负载。而定时开关主要控制曝气机的启停,可以每天单独设置时间实现自动控制。3 试验过程 3.1 试验设计(1)试验组设置。试验组位于白洋淀示范区“壕沟”内,“壕沟”作为白洋淀重要的水体运输通道,对白洋淀内的生态恢复发挥至关重要的作用。目前“壕沟”内水体成为不流动的河道,溶氧含量低,水草无法生长,导致总氮、氨氮、亚硝酸盐氮等含量较高,长此以往,该“壕沟”成为污染源聚集区。根据设备运行要求及当地环境,选择 2条相邻同等长度的“壕沟”,其中一条为试验组,另外

    19、一条为对照组,分析太阳能水层交换装置的运行对水体内污染性理化因子的消除效果。(2)样品采集。太阳能水层交换装置于 2022年 9 月 10 日完成安装调试,对水样的采集共 4 个频次,对照组和试验组同时段进行。第一频次在设备安装前采集,后 3 个频次,是在设备运行一周后并以每 2 d 为一个频次,在此期间设备保持持续工作状态。用水样是利用 5 L 采水器在水体表面以下 0.5 m 处采取,随即灌装在相应容积的广45第 4 期陈晓龙等:太阳能水层交换装置设计与试验口塑料瓶中。上述采样过程,均进行 3 次重复。(3)水质分析及数据处理。本次共分析 4 种理化指标,分别为溶氧(DO)、总磷(TP)、

    20、总氮(TN)和氨氮(NH3-N),其中溶氧(DO)通过 YSI便携式仪器现场测定,其余 3 种在实验室依据水和废水监测分析方法28方法测定。为了探清设备对水体内水质指标的影响,进行两方面的比较,一是比较各水质指标在实验组和对照组间后 3 个频次的差异性;二是对试验组的后 3 个频次数据相比第一次的差异性分析。上述的差异性检验均使用 SPSS 软件中独立样本 T 检验方法,P0.05 为显著性差异,P0.01 为极显著差异。所有数据均以平均值标准误表示,除非另有说明。3.2 结果分析试验组和对照组的 TN 变化如图 5 所示,设备安装前,两处水体中 TN 相同,均为 2.350.12 mg/L,

    21、在设备运行 1 周后,试验组整体处于下降趋势,尤其第二频次(2.140.79 mg/L)下降程度较明显,之后第 3(2.130.82 mg/L)和第 4 频次(2.240.88 mg/L)基本保持平稳,但相比第一次均上升。对照组整体处于波动性上升,尤其第 2(2.680.16 mg/L)和第 4 频次(2.890.18 mg/L)上升明显,即使第 3 频次(2.580.17 mg/L)不属于连续性上升,但均比第一次高。就最后一次而言,试验组 TN 相比对照组下降了 29.02%。T检验分析,试验组与对照组之间均呈现极显著差异(P0.01),同时试验组内后 3 个频次均与第一次呈现显著性差异(P

    22、0.05)。图 5 设备周边水体总氮含量变化对比Fig.5 Comparison of changes of total nitrogen content in water around the equipment试验组和对照组的 TP 变化如图 6 所示,设备安装前两处水体中 TP 相同,均为 0.230.13 mg/L。在设备运行后,试验组一直处于较高幅度的连续性下降趋势,对照组虽然同样处于连续性下降趋势,但相较于试验组较平缓。在第 3 频次时,试验组(0.13 mg/L)相比对照组(0.170.06 mg/L)下降了 23.98%;在第 4 频次时,试验组(0.110.04 mg/L)相

    23、比对照组(0.160.08 mg/L)下降了 31.25%。T 检验分析,试验组与对照组之间在第 3 次和第 4 凭此呈现显著差异(P0.05),同时试验组内第2 次和第1 次呈显著性差异(P0.05),第 3 次和第 4 次呈极显著差异(P0.01)。图 6 周边水体总磷含量变化对比Fig.6 Comparison of changes of total phosphorus content in water around the equipment试验组和对照组的 NH3-N 如图7 所示,设备安装前两处水体中 NH3-N 相同,均为 0.770.03 mg/L。图 7 设备周边水体氨氮含

    24、量变化Fig.7 Changes of ammonia nitrogen content in water around the equipment在设备运行后,试验组和对照组整体上一直55渔 业 现 代 化2023 年处于连续性下降趋势。但设备运行一周后,在第2 频次时,试验组(0.250.14 mg/L)下降幅度明显大于对照组(0.660.04 mg/L);第 3 频次虽然对照组的下降幅度高于试验组,但是试验组低于对照组,在第 4 频次时,两处又较为相似。就第 2频次而言,试验组相比对照组下降 62.12%。T 检验分析,试验组与对照组之间仅在第 2 次呈现极显著差异(P0.01),同时试

    25、验组内后 3 个频次均与第一次呈显著性差异(P0.01)。在水深 0.5 m 处设备周围水体中 DO 变化如图 8 所示。可以看出,8 m 范围内溶氧含量较高,距离越近增氧效果越明显,后保持一定下降水平,说明太阳能水层交换装置的增氧效果较为明显。进一步通过检测设备周围水体中不同水层(离水面 0.1 m、0.6 m、1.1 m 和 1.6 m 处)及对照组水下 1m 处的 DO 含量发现,上下水层溶氧含量基本保持不变。图 8 设备周边水体 DO 含量变化Fig.8 Change of COD content in water around the equipment通过定点流速仪测试河道中离设备

    26、中心距离的水流速度,如图 9 所示。图 9 河道内水流流速对比图Fig.9 Comparison of flow velocity in river channel结果发现,试验组河道离设备距离较远时水流速度可稳定在 0.45 m/s 左右,而对照组河道的平均水流速度仅为 0.22 m/s。水层交换装置推动了河道中的水体流动。4 讨论4.1 设备对营养盐和水质改善效果明显通过 2022 年 9 月连续测定试验河道水体中水质状况,分析了太阳能水层交换装置对河道水动力、溶氧含量、氮磷含量的影响。结果显示:该装置每天平均工作时长达 8 h,设备周围水体总氮、总磷和氨氮分别与同时期对照组相比降低29.

    27、02%、31.25%、62.12%,安装设备的水体中溶氧明显提高,河道中水流流速增加 2 倍以上,上下水层交换效果明显。太阳能水层交换装置可一定程度降低水体中TN、NH3-N 含量,尤其在设备刚运行初期对消除TN、NH3-N 效果明显。同时,太阳能水层交换装置可以一定程度降低 TP 含量,尤其是在设备长时间运行后可以消减 TP。而水层交换装置的增氧效果明显,距离越近增氧效果越显著,后保持一定下降水平。进一步通过检测设备周围水体中不同水层及对照组水下 DO 含量发现,上下水层溶氧含量基本保持不变,说明该设备能交换上下水层,达到溶氧平衡。太阳能水层交换装置可以推动河道中的水体流动,与外界水体进行交

    28、换,有利于促进有机污染物的有氧降解、净化水质,提高水体透明度,改善各水域的生态联系。设备运行方式显著提升:本装置能够从底层增氧,提高整个水域的溶氧含量,加快表层和底层水流交换,推动水体流动,改变渔业水域营养盐循环方式,有效促进水域初级生产力和自净能力的提高,从而改善了渔业水域水质和生态环境。4.2 设备应用前景广阔水层交换是养殖水体中不可或缺的重要工艺环节,通过曝气向水体中充入氧气满足好氧微生物代谢所需,同时保证水体中污水的搅动为微生物有氧反应提供必要的条件。为了提高水中的溶氧速率,需要保证实现气体源源不断地充入水下,实现水与气体的接触,并且保持充入水下气体量的稳定与持续性,保证水与气体的充分

    29、接触与混合。同时保持水的流动性,使气体扩散到尽可能65第 4 期陈晓龙等:太阳能水层交换装置设计与试验远的水域,以使水中的生物固体处于悬浮状态,利用有氧分解作用的发生。目前,比较常用的水层交换方式主要有推水机式、水车式以及叶轮式等30-31,其中推水机式能较好地实现水体流动32,但上下水层交换不充分。而水车式、叶轮式虽然增氧效果好33-34,但也无法达到水层充分交换的目的。而推浪式虽然能增加水域表面的溶氧度,但无法从水域底层开始增氧,无法促使表层和底层水流交换,要想增加表层下的水体的溶氧度,促使表层和底层水流交换,必须加大功率,增加能耗。太阳能水层交换装置与普通的水层交换装置对比35-38,可

    30、降低 45%75%的能耗,曝气孔不易堵塞,混合效率高,增氧服务面积大可达 100 m2。曝气效果好、集成性高、结构紧凑、灵活性高,同时安装维护方便,制作成本较低。可适用于池塘养殖、水库净化以及河道水体治理等领域。5 结论该设备以太阳能为动力,定时循环启动,具有结构简单、曝气时间长、动力效率高等特点,可用于河道的生态修复及养殖池塘的上下水层交换。该设备曝气孔的设计提高了氧气的利用率,合理地保证了河道内微生物增长的需氧量,高效去除了水体中总磷、总氮和氨氮等污染物。太阳能板采用 4 块 250 W、24 V 串并联组成的水层交换装置每天可以修复约 200 t 的水体。太阳能水层交换装置在河道等系统水

    31、体净化中具有广阔的应用和推广价值。参考文献1 朱烨,张拥军,田昌凤,等.移动式太阳能增氧机的改进设计与试验J.渔业现代化,2016,42(6):21-26.2 高强,胡冲.小流域水质生态修复治理技术J.农业工程,2022,12(1):62-64.3 刘浩,杨云,韩奇鹏.渔业水域修复的研究与应用J.饲料博览,2020(6):48-51.4 李绪兴,雷云雷.渔业水域生态环境及其修复研究J.中国渔业经济,2009,27(6):69-78.5 徐志浩,陈阳标.水生态构建技术在封闭不良水体中的应用以盐城市某封闭水域水生态修复工程为例J.工程技术研究,2022,7(8):52-54.6 范小欢,李珍珍.传

    32、统盘式微孔薄膜曝气盘的结构优化设计J.广东化工,2020,47(7):181-183.7 顾海涛,潘磊,钟伟,等.水温对增氧机增氧性能参数的影响研究J.渔业现代化,2021,48(5):49-54.8 董向前,张博.揭示曝气模式影响营养盐去除及污泥特征的机制J.水处理技术,2023,49(2):66-69.9 张文龙,杨雪梅,王浩岚,等.河流微孔曝气系统充氧性能优化试验J.水资源保护,2022,38(3):154-160.10李振安.一种新型鼓泡曝气装置的研究J.农业工程学报,1997,13(1):103-106.11高新磊,邱颉,黄睿,等.精准曝气技术在污水处理中的研究进展J.资源节约与环保

    33、,2022(10):93-96.12庄健,王洪臣,齐鲁,等.孔径对微孔曝气充氧性能的影响J.环境工程学报,2014(5):1723-1726.13顾海涛,刘兴国,何雅萍,等.微孔曝气式增氧机的性能及应用效果J.渔业现代化,2017,44(3):25-28.14朱明石.河流生态修复技术概述J.广东化工,2013,40(13):135-136.15霍兴阳,杨星,张家兴,等.基于一体化修复设备的府河底泥原位修复技术J.农业工程,2021,11(10):53-56.16宋兰兰,徐群,曹建锋.曝气增氧技术治理有机污染河流的研究进展J.资源节约与环保,2016(4):39.17吴世海.射流自吸式增氧机J.

    34、农业机械学报,2007,38(4):88-92.18宋瑜清,熊元芳,马志光.三种增氧机增氧性能研究J.现代农业装备,2014(2):37-40.19朱海波,荆勇.景观水体生态增氧修复技术研究J.环境保护与循环经济,2019,39(8):23-27.20宋奔奔,单建军,吴凡.一种新型管式曝气装置的设计与试验J.渔业现代化,2016,43(2):22-27.21赵庆习.水下推流曝气装置结构设计及优化研究D.长春:吉林大学,2020.22周志强,张忠锋.一种可移动式旋流太阳能曝气装置:201521115269.0P.2016-06-15.23徐璟,张育斌,马二磊,等.增氧灌溉管路曝气装置设计与实验J

    35、.农业与技术,2020,40(22):3.24赵永明,邢阳.水处理设施曝气装置曝气量计算J.当代化工,2018,47(6):4.25李佳鹏.曝气机用高速电机设计与分析D.沈阳:沈阳工业大学,2022.26成大先.机械设计手册 第 4 卷 M.6 版.北京:化学工业出版社,2016:523-694.27钟伟.微孔曝气式增氧机增氧性能试验J.农业工程,2019(12):83-87.28SC/T 60091999 增氧机增氧能力试验方法S.29汤利华,孟广耀.曝气器的最优孔径分析J.中国科学技术大学学报,2006,36(7):775-780.30唐其林.多种曝气装置在黑臭水体治理中的对比J.中国资源

    36、综合利用,2019,37(7):31-35.31邱锦辉,周士琳,邓少强.水产养殖机械增氧机的应用与发展J.现代农业装备,2020,41(6):25-28.32饶良鸿.淡水养殖的主要增氧机械及其使用技术J.江西75渔 业 现 代 化2023 年水产科技,2021(2):43-44.33田润泽,武涛.曝气技术在河道生态修复中的应用 以纳米气溶技术在上海走马塘河道水质提升为例J.低碳世界,2019(9):21-23.34卢青.叶轮式增氧机与微孔管道曝气增氧机试验与评价D.南京:南京农业大学,2015.35国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法M.4 版.北京:中国环境科学出

    37、版社,2002.36于野,郭研,肖淑铃,等.一种多重曝气鳞片状生物转盘装置设计J.中国科技信息,2023(1):119-121.37任斌.抽拉式精确曝气装置系统在污水厂中的应用J.科技,2022(6):46-48.38潘强,张俊新,刘明泰,等.气提式增氧曝气装置在海水养殖池中的性能测定J,2016,31(6):673-677.Design and experiment of solar water layer exchange deviceCHEN Xiaolong,CHE Xuan,LIU Xingguo,TIAN Changfeng,WANG Xiaodong,LI Xinfeng(Fis

    38、hery Machinery and Instrument Research Institute,Chinese Academy of Fishery Sciences,Key Laboratory of Fishery Equipment and Engineering,Shanghai 200092,China)Abstract:With the continuous growth of Chinas economy,the number of sewage from industry,agriculture and life is increasing,which pollutes th

    39、e ecological environment of fishery waters in varying degrees and affectes the health of ecosystems.For this reason,scholars at home and abroad have conducted many studies on the ecological restoration of fishery waters,however there is a lack of the equipment for ecological restoration of fishery w

    40、aters.This paper designed and developed a set of solar energy devices to exchange the upper and lower water layer after a theoretical analysis.It can promote water flow through aeration,and the exchange of upper and lower water layer can promote aerobic degradation of organic pollutants,which purifi

    41、es water quality,provides a suitable environment for the growth of submerged plants,and improves the ecological relationship between different waters.The equipment was powered by solar energy and can be started automatically and periodically.It has the characteristics of a simple structure,long aera

    42、tion time,and high power efficiency.In September 2022,the water quality in the water body of the test river was continuously measured,and the influence of the solar water layer exchange device on the river hydrodynamics,dissolved oxygen content,nitrogen,and phosphorus content was analyzed.The result

    43、s showed that the average working time of the device was up to 8 hours per day,and the total nitrogen,total phosphorus and ammonia nitrogen in the water around the device were reduced by 29.02%,31.25%,and 62.12%,respectively,in comparison with the control group.The device increased the dissolved oxy

    44、gen significantly,and the flow velocity in the channel was increased by more than two times,showing that the exchange effect of the upper and lower layers was obvious.The test showed that the device had effectively solved the problem of river flow fluidity,improved the water environment,and played a positive role in the ecological restoration of river water.Key words:solar energy;water layer exchange;aeration aeration;water flow;ecological restoration85


    注意事项

    本文(太阳能水层交换装置设计与试验.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png