欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用.pdf

    • 资源ID:651796       资源大小:3.84MB        全文页数:12页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    开通VIP
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用.pdf

    1、张涛,宋文磊,陈倩,等.矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用J.岩矿测试,2023,42(4):748759.doi:10.15898/j.ykcs.202210250206.ZHANG Tao,SONG Wenlei,CHEN Qian,et al.Application of Automated Quantitative Mineral Analysis System in ProcessMineralogyofLow-gradeCopperSlagJ.RockandMineralAnalysis,2023,42(4):748759.doi:10.15898/j.ykc

    2、s.202210250206.矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用张涛1,宋文磊1*,陈倩1,杨金昆1,胡轶2,黄军2,许丹妮1,徐亦桐1(1.西北大学地质学系大陆动力学国家重点实验室,陕西西安710069;2.泰思肯(TESCAN)中国总部技术应用部,上海201112)摘要:矿产资源高效综合利用是目前全球矿业发展的主要方向。传统的光学显微镜和扫描电镜等技术在查明许多低品位矿石的元素赋存状态等方面具有局限性,且无法提供定量化的矿物学信息,制约了对这些金属矿石选矿工艺的提升。近年来,基于扫描电镜和 X 射线能谱仪的矿物自动定量分析系统越来越多地应用到复杂矿石和工艺矿物学的研究

    3、中。为了进一步丰富和拓展该类系统在工艺矿物学领域的应用研究,本文利用矿物自动定量分析系统 TIMA(TESCANIntegratedMineralAnalyzer)对中国某矿山低品位铜矿渣样品进行矿物学测试分析,展示其在提取多种工艺矿物学参数研究中的具体应用。分析结果表明:该铜矿渣中铜元素含量(0.08%)很低,主要赋存在黄铜矿中,该矿物含量为 0.21%;脉石矿物含有大量石英(47.46%)、白云母(10.10%)和方解石(9.88%)等;黄铜矿连生关系复杂,主要以连生体形式呈不规则粒状零散分布在石英和方解石等脉石矿物中,粒度小且分布极不均匀,其中 1176m 颗粒占比较大;解离度低于 30

    4、%的黄铜矿颗粒质量占全部的 85%左右,整体解离度较低,因而需要进一步磨矿来提升黄铜矿回收率。以上研究表明,对于有用矿物含量低、粒度细小且嵌布关系复杂的矿石样品,包括 TIMA 在内的矿物分析系统能够提供快速、定量、全面且准确的工艺矿物学参数信息,有利于优化选冶流程,在提高矿产资源的综合利用方面具有非常广阔的应用前景。关键词:TIMA;矿物自动定量分析;工艺矿物学;铜矿渣;解离度要点:(1)TIMA 可清晰检测并统计复杂矿石中各种矿物的含量、组成、形态、粒径分布、嵌布关系以及有用矿物的解离度。(2)低品位铜矿渣中铜主要赋存于黄铜矿中,且含量较低,并常与脉石矿物复杂嵌布和连生,需通过进一步磨矿提

    5、升解离度和回收品位。(3)TIMA 可提供快速、定量、全面且准确的工艺矿物学参数信息,可以有效地监控和优化复杂且低品位矿石的选冶流程。中图分类号:P575;P618.41文献标识码:A工艺矿物学的任务是为矿石的可处理性提供详细的矿物学评价,具体研究有用矿物(元素)的含量、赋存状态、矿物的粒度、嵌布关系和解离度等1-8。传统的岩矿鉴定和工艺矿物学参数统计主要借助偏光显微镜和普通扫描电镜等仪器设备完成。然而,对于很多低品位、细颗粒和矿物连生关系复杂的矿石和矿渣,其组分非常多样,结构十分复杂,仅依靠传统的光学显微镜和扫描电镜很难实现其选矿工艺收稿日期:20221025;修回日期:20230704;接

    6、受日期:20230717基金项目:国家自然科学基金项目(41973036,42273070)第一作者:张涛,硕士研究生,矿物学、岩石学、矿床学专业。E-mail:。通信作者:宋文磊,博士,副教授,主要从事矿床地球化学研究。E-mail:。2023年7月岩矿测试Vol.42,No.4July2023ROCKANDMINERALANALYSIS748759748上的提升1-3,8-12。近几十年来,随着计算机技术、扫描电子显微镜、X 射线能谱分析以及复杂图像分析和数据统计技术的发展,基于扫描电子显微镜的矿物自动定量分析系统也得到迅速发展,如 QEMSCAN(QuantitativeEvaluati

    7、onofMineralsbyScanningElectronMicroscopy)、MLA(Mineral Liberation Analyser)、AMICS(AdvancedMineralIdentificationandCharacterizationSystem)、TIMA(TESCANIntegratedMineralAnalyzer)等,并逐渐被应用于复杂矿石工艺矿物学研究和优化矿山选矿工艺流程中2,8-11,13-58。例如,利用 TIMA 对中国白云鄂博矿床稀土和铌矿石的研究工作,不仅查明了矿石中稀土和铌的主要赋存矿物和分布规律,还统计出有用矿物的含量、粒度和解离度等信息,为该

    8、矿床中稀土、铌的成因研究和资源提取提供了可靠的矿物学基础数据2,29;TIMA 对澳大利亚 Pilgangoora 伟晶岩型锂矿床的研究显示,其中富锂矿物主要为锂辉石和锂云母,不同类型矿石中锂矿物的矿物类型、含量、共生组合和嵌布关系明显不同,这些特征参数有助于厘清不同类型矿石的选矿目标37-38。此外,对澳大利亚 MountIsa 矿床铀矿渣浸出实验前后样品的 TIMA 研究表明,铀石溶解程度高,钛铀矿次之,而高硅钛铀矿最难溶,硅的存在使本已难溶的钛铀矿更加难溶;此外,相对于 X 射线粉晶衍射(XRD),TIMA 还识别出许多含量低于 1%的脉石矿物,该研究在微观尺度上鉴别浸出前后矿石的矿物学

    9、特征变化,方便及时有效地监控整个选冶过程36。值得注意的是,目前最新的矿物自动定量分析系统可以检测并提供包括矿物(元素)种类、含量、赋存状态、结构、粒度、解离度和预测回收率等至少十余种矿物学参数5,9-10。然而,以往使用该系统的研究主要关注样品少数几项矿物学参数(如粒度、解离度等),而使用该系统提取全套工艺矿物学参数信息方面的研究仍然相对较少。此外,对于一些低品位(通常介于最低工业品位和边界品位之间)、细颗粒和矿物连生关系复杂的矿石和矿渣的分选难题,一直以来都是阻碍选冶厂生产效率提高的重要因素8,18,20。这些矿石中,有用矿物含量通常很低、矿物颗粒细小(如几微米)、连生脉石矿物多且结构关系

    10、复杂,传统光学显微镜和扫描电镜等手段难以准确查清其赋存状态且非常耗时耗力,还很难获取准确的定量统计信息。目前商业化的矿物自动定量分析系统多数是基于高分辨率的场发射扫描电镜,其对矿物成分、结构的识别和定量解析可达到微米-亚微米尺度,相比传统光学显微镜和扫描电镜具有明显优势。因此,本文以 TIMA 为例,对中国某矿山低品位铜矿渣进行测试,展示矿物自动定量分析系统在工艺矿物学研究中的具体功能和优势,旨在为矿产资源高效综合利用提供借鉴。1实验部分 1.1实验样品及处理本文研究的矿石样品来源于中国某铜矿山含铜低品位矿石。初步工作显示矿石主要呈浸染状构造,矿物颗粒主要为半自形-他形结构,以石英为主,其次为

    11、云母类和碳酸盐矿物等。实验时对矿石样品进行破碎,取部分铜矿渣试样在初步研磨后用环氧树脂制样,树脂靶样品经磨平和抛光后进行镀碳处理。由于天然地质样品的导电性差,上机测试前需在真空条件下对样品进行镀碳、镀金和镀铬等导电涂层处理,防止其放电,影响正常测试。1.2测试仪器与测试条件样品测试分析在西北大学大陆动力学国家重点实验室矿物自动定量分析系统(TIMA)实验室完成,仪器型号为:TIMA3XGMH。该系统主要由高分辨率肖特基场发射扫描电镜(TESCANMIRA3)和包括 4 个高通量硅漂移能谱探测器(EDAXElement30)在内的 9 个探测器组成,其探测器与软件高度兼容,具有 4 种 X 射线

    12、数据扫描采集模式(高分辨扫描、点扫描、线扫描和点阵扫描)和 3 种分析模式(模态分析、解离分析和亮相搜索)10,29,33。该类系统通常还配备强大的矿物数据处理软件,可将分析测试与数据处理分开,软件具备矿物识别、数据研究、图像处理、报告生成和解释等功能。TIMA 测试过程中使用的扫描电镜图像获取和能谱分析实验参数条件为:加速电压 25kV,电流10nA,工作距离 15mm。背散射(BSE)信号和能谱(EDS)信号分别使用 Pt 法拉第杯和 Mn 标样进行校准10。选择好数据扫描采集模式后,用户可根据样品实际情况自行设定采集 BSE 像素点间距、EDS测试步长和 X 射线计数。本测试使用解离分析

    13、的点阵模式,BSE 像素和 EDS 步长分别为 3m 和 9m,每个能谱点的 X 射线计数为 1000。值得注意的是,对于一些含颗粒非常细小的隐晶质和黏土矿物的样品,需要进一步提高 BSE 像素(3m)的分辨率和降低 EDS 步长(9m),同时适当提高 X 射线计数(1000)。虽然测试时间会相应增加,但会明显地提高矿物识别的精度和准确度。第4期张涛,等:矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用第42卷749图 1 为 TIMA 对铜矿渣树脂靶样品测试流程示意 图。主 要 步 骤 为:设 置 实 验 参 数 后,用510min 快速自动获取整个样品的低分辨率 BSE全景图像,用

    14、户可根据需求选择任意大小和形状的测试区域(本次测试为全选);然后将所选区域平均划分成若干正方形区块(Field)(区块尺寸通常为5001000m,本次选择区块尺寸为 500m);测试开始后仪器会以区块为单位,对区块内样品按一定顺序进行逐个扫描;在具体某个区块内,系统按照预先设置的 BSE 像素点间距(3m)和 EDS 点阵间距(9m)获取 BSE 和 EDS 信号数据,待持续收集能谱 X 射线计数达到设定值时(1000),系统会自动移动至下一区域进行测试;测试完成后,TIMA 软件会逐级自动统计拼合每个像素位置和每个区块内所获取的所有 BSE 图像和 EDS 数据,区分不同矿物相,并且利用 E

    15、DS 谱图和元素含量等相关信息与内置数据库中高达 4700 多种矿物能谱信息自动进行对比匹配从而准确鉴定矿物,最后通过伪彩图像显示不同的矿物相及其结构关系10。后期样品数据处理、校正、矿物学参数信息查看和成果导出需利用TIMAVersion 在线或离线版本软件,这套软件的功能也在持续更新。详细的测试流程和实验参数选取可参考陈倩等10和 Liu 等29。2TIMA 对低品位铜矿渣工艺矿物学参数分析结果 2.1矿物组成分析本文对该铜矿渣 TIMA 矿物定量分析结果显示,TIMA 不仅可以识别出矿渣样品中的矿物种类,还可以计算出每种矿物的含量(质量分数)。该样品中脉石矿物主要为石英(47.46%,为

    16、质量分数,下同)、白云母(10.10%)、方解石(9.88%),其次是钙铁榴石(6.29%)、正长石(4.96%)、阳起石(3.92%)和黑云母(3.37%)等;其中含铜矿物主要为黄铜矿,含量只有0.21%(图 2),这些微量的铜矿物与大量的石英、方解石和白云母等矿物紧密共生,在以往的研究工作很难被准确表征。2.2元素组成及赋存状态分析查清矿石中有用元素的赋存状态,明确这些有用元素以何种矿物形式存在是决定选矿回收方法的关键5。TIMA 可以直接获取样品中能谱检测范围内任意元素的质量分数及赋存状态。利用 TIMA对铜矿渣中元素组成进行查看发现样品中 Cu 元素占比仅 0.08%(图 3a),且这

    17、些 Cu 元素主要以独立矿物形式赋存在黄铜矿中,在含铜矿物中占比高达99.82%,剩余极少量分布在斑铜矿中(图 3b)。因此,可确定该铜矿渣主要回收的铜矿物为黄铜矿。值得待测树脂靶样品逐级统计拼合和识别(Phases)逐像素点分析(Pixel)全选并划分扫描区块(Field)500m超快速获取 BSE 图像(Mosaic)选择测试区域图1TIMA 解离模式测试铜矿渣树脂靶样品流程示意图Fig.1SchematicdiagramsofTIMAanalysisprocessusingresolutionliberationanalysismodeforthecoppertailings.第4期岩矿

    18、测试http:/2023年750注意的是,矿渣中未发现 As、Hg、Cd 等有害元素,在实际选矿过程中 TIMA 可对矿物中的这些有害元素进行识别和定量,冶炼厂可以将含有害元素矿物进行提前筛选,提高选矿效率7。此外,若需要查看这些 Cu 元素或矿物在样品中的具体位置,可通过 TIMA 的元素搜索功能即时显示铜矿渣中 Cu 元素的分布特征(图 4a)以及在 BSE背景下黄铜矿的分布图(图 4b)。图 4 显示 Cu 元素含量高的(亮点)位置与黄铜矿产出位置完全对应,这一功能是开展矿物微区原位分析和嵌布特征研究的有效手段。2.3矿物颗粒分布与粒度统计分析在确定铜矿渣矿物组成和铜元素赋存状态的基础上

    19、,进一步研究含铜矿物的粒度组成及其分布特点,对确定该矿渣合适的磨矿细度和选矿流程具有重要的指导作用19。TIMA 软件中颗粒查看功能可以快速统计单个或多个样品中有用金属矿物的尺寸和表面积等形态参数。图 5 为 TIMA 颗粒查看功(a)(b)图例石英白云母方解石钙铁榴石正长石阳起石黑云母1mm3.373.924.966.299.8810.1047.46黄铜矿0.21图2(a)铜矿渣 TIMA 矿物伪彩相图(局部)和(b)矿物含量百分比组成(%)Fig.2(a)TIMAfalse-coloredmineralphasemapofcoppertailings(partial)and(b)miner

    20、alabundancedistributionmap(%).40302010OSiCa48.11(a)(b)30.247.404.993.561.811.631.070.530.120.110.110.080.080.070.040.020.01 0.0199.82%黄铜矿0.18%斑铜矿0.01FeAlKCMgSNaFMn CuHTiBaPZnW 其他元素质量分数(%)0图3(a)铜矿渣元素质量分布柱状图;(b)铜元素赋存状态分布图Fig.3(a)Theelementmassdistributionhistogramsofthecoppertailings;(b)Copperelementd

    21、istributionbetweenthecopperminerals.第4期张涛,等:矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用第42卷751能提供的含黄铜矿颗粒的矿物统计图,图中显示黄铜矿颗粒主要以连生体形式呈不规则粒状、微粒状或斑点状零星散布在脉石矿物中(图 5 中 a,b)。TIMA 可进一步对铜矿渣中黄铜矿的粒度分布进行统计。如图 6 所示,图中横坐标表示颗粒粒度区间(m),纵坐标为对应粒度区间内黄铜矿质量分数(%),图中显示黄铜矿粒度分布不均匀,粒度多介于1176m,样品中的黄铜矿整体粒度较小且粒度变化范围大。2.4矿物嵌布特征与连生关系分析以 TIMA 为代表的矿物

    22、定量分析系统除了准确识别矿物单体,还能够对矿渣中有用金属矿物颗粒与其他矿物的复杂连生状态进行快速分析2-3,13-20。Gaudin59根据矿石颗粒中多种矿物的连生特征,将矿物颗粒连生关系划分为四种类型:毗邻型、细脉型、层壳型和包裹型。利用 TIMA 颗粒查看功能厘定出铜矿渣中黄铜矿颗粒与其他矿物的嵌布特征也存在这四种类型(图 7)。相对于细脉型、层壳型和包裹型,(a)S-LFe-LCu-L2mm2mm200m黄铜矿黄铜矿方解石阳起石硬石膏S-K01000 2000 3000 4000 5000 6000黄铜矿能谱谱图特征7000 8000 9000 1000011000Fe-KFe-KCu-

    23、KCu-K(b)图4(a)铜矿渣中铜元素分布图以及黄铜矿的能谱谱图特征;(b)黄铜矿在铜矿渣背散射图像中的分布特征及其矿物共生关系Fig.4(a)DistributionofcopperelementandtheEDSspectrumofthechalcopyriteincoppertailings;(b)Distributionandmineralparagenesischaracteristicsofchalcopyriteinbackscatterimages.(a)(b)500m500m图5(a)铜矿渣中含黄铜矿颗粒 TIMA 矿物统计图(矿物图例与图 2 一致);(b)黄铜矿在各含铜

    24、颗粒中的分布特征Fig.5(a)SummaryoftheTIMAfalse-coloredchalcopyrite-bearingmineralparticlesincoppertailings(minerallegendisconsistentwithFig.2);(b)Distributioncharacteristicsofchalcopyriteincopper-bearingparticles.第4期岩矿测试http:/2023年752毗邻型的铜矿渣颗粒更容易解离和分选。此外,TIMA 软件还可对与黄铜矿连生矿物的类型和含量进行定量统计。如图 8 所示,在铜矿渣中,与石英连生的黄铜矿

    25、占比达 43.16%,石英是最主要的脉石矿物,剩下的黄铜矿与方解石(10.17%)、白云石(6.95%)和阳起石(6.13%)等矿物存在不同程度地连生,而黄铜矿自由颗粒非常稀少,占比不到 2%。上述实验结果表明,黄铜矿连生关系较为复杂,不利于矿物分选。2.5矿物解离度及矿石品位和回收率计算在破碎和研磨过程中,矿物解离度表示有用矿物从其他脉石矿物中释放出来的程度37,59。在充分了解铜矿渣粒度特征和连生关系的前提下,TIMA 软件可以根据颗粒表面积或者体积计算出矿渣中黄铜矿的解离度37,并预测铜精矿尾矿矿石回收过程中的品位和回收率。如图 9a 所示,横坐标代表黄铜矿不同的解离度区间,纵坐标代表特

    26、定解离度区间内黄铜矿所占的质量分数(%)。总体来看,解离度低于 30%的黄铜矿颗粒质量占全部的 85%左右,说明矿渣中黄铜矿解离度较低。同时 TIMA 能够利用颗粒筛选、分类功能方便用户查看不同解离度下黄铜矿颗粒的嵌布特征和连生关系。图 9b 选 取 了 三 组 不 同 解 离 度(0%30%,30%60%和 60%100%)的黄铜矿颗粒,该功能能够直观地看出整个矿渣中黄铜矿的解离度情况,其中低解离度的黄铜矿颗粒最多,导致铜矿渣的矿石品位和回收率偏低。矿石的理论品位-回收率曲线是指为某一矿石在给定品位下通过物理分离所能达到的最大预期回收率。这是由有用矿物的表面解离面积决定的,并与磨矿细度直接相

    27、关60。根据上述矿物解离度和矿物粒度的关系,TIMA 可以快速计算出铜矿渣中黄铜矿理论品位-回收率(图 10)。由图 10 可知,若回25黄铜矿颗粒质量分数(%)2015102.23.33.34.84.87.27.211111616232335355151767611350图6铜矿渣中黄铜矿颗粒粒度(横坐标 m)分布图Fig.6Histogram of size(abscissa,m)distribution ofchalcopyriteinthecoppertailings.毗邻型细脉型层壳型包裹型黄铜矿石英阳起石方解石黑云母钙铁榴石图7铜矿渣中黄铜矿与其他矿物在微米尺度下典型的连生关系类型

    28、Fig.7Interlockedrelationshiptypes(neighboring,stringer,shellandwrapped)ofchalcopyriteandotherminerals(quartz,actinolite,calcite,biotiteandandradite)atmicronscaleinthecoppertailings.5043.164.7110.176.956.135.383.311.4318.7640302010石英磁铁矿方解石白云石阳起石黄铁矿白云母其他自由颗粒0黄铜矿质量分数(%)图8铜矿渣中黄铜矿与其他矿物连生关系统计图Fig.8Statist

    29、ical histogram of the association relationship ofchalcopyrite and other minerals(quartz,magnetite,calcite,dolomite,actinolite,pyrite,muscovite,etal.)inthecoppertailings.第4期张涛,等:矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用第42卷753收所有解离度80%的黄铜矿颗粒,回收的精矿铜品位为 99.94%,但只有 1.35%的黄铜矿可被回收;若回收所有解离度10%的黄铜矿颗粒,回收的精矿铜品位为 22.19%,大约

    30、 42.58%的黄铜矿可被回收利用。可见,该铜矿渣矿物组合复杂,在当前研磨细度下,黄铜矿整体解离度较低,属难选矿石,若想要提高黄铜矿的回收率,可考虑通过磨矿进一步降低粒度来释放更多的黄铜矿单体颗粒,提高其解离度。3结论本文使用矿物自动定量分析系统 TIMA 对低品位铜矿渣进行工艺矿物学研究,结果表明该铜矿渣中 Cu 元素含量为 0.08%,主要赋存于黄铜矿中。这些黄铜矿与脉石矿物嵌布关系复杂,且矿物颗粒细小,在当前磨矿细度下,黄铜矿解离度低,为提升铜的回收率,需进一步磨矿从而获取更高的黄铜矿解离度和回收品位。从本文研究可以看出,包括TIMA 在内的矿物自动定量分析系统应用于低品位和复杂金属矿石

    31、工艺矿物学领域,除了能够测定低品位金属矿石中矿物和元素的类型、含量和分布以外,还能快速准确获取矿物的微观结构、矿物连生及嵌布关系、粒度等矿物学参数。更为重要的是,该系统还能显示金属矿物颗粒的解离度特征,并以此来计算和评估矿石的品位和矿渣的回收率,从而做到监控和优化粉碎、研磨、浮选、浸出、回收和冶炼等选冶流程。值得注意的是,虽然矿物自动定量系统在矿物定量识别方面具备优势,但仍有其不足之处。这些系统测试是基于能谱分析,其对元素检测的精度和准确度要低于波谱和质谱,在进行元素赋存状态研究时,侧重于对独立矿物的定量分析,而无法对低含量的元素类质同象和离子吸附等赋存状态进行分析,50(a)(b)60%10

    32、0%100m500m2mm30%60%0%30%14540353025黄铜矿质量分数(%)20151050101020203030404050506060707080809090黄铜矿颗粒解离度(%)图9(a)铜矿渣中不同解离度条件下黄铜矿的质量分布柱状图(%);(b)不同解离度范围内的含黄铜矿矿物颗粒特征(矿物图例与图 2 一致)Fig.9(a)Bar chart of chalcopyrite mass fraction with different degrees of liberation in the copper tailings;(b)Particlecharacteristic

    33、sunderdifferentdegreesofliberation(minerallegendisconsistentwithFig.2).100102030405060708090矿石回收率(%)黄铜矿解离度(%)8042.5899.9492.4590.4474.2769.0653.9338.5214.8822.197.094.343.551.87 1.731.35 1.3599.94604020矿石品位(%)050403020100矿石品位矿石回收率图10铜矿渣中黄铜矿解离度与矿石品位、回收率关系示意图Fig.10Line graph of relationship between ch

    34、alcopyriteliberationdegreeandoregradeandrecoverypercentinthecoppertailings.第4期岩矿测试http:/2023年754也不易区分化学成分特别相似的矿物。因此,建议配 合 使用 X 射 线 粉 晶 衍 射(XRD)、电 子 探 针(EPMA)、激光拉曼以及激光剥蚀等离子体质谱(LA-ICP-MS)等测试手段,以提升测试分析准确度。Application of Automated Quantitative Mineral Analysis System in ProcessMineralogy of Low-grade Co

    35、pper SlagZHANG Tao1,SONG Wenlei1*,CHEN Qian1,YANG Jinkun1,HU Yi2,HUANG Jun2,XUDanni1,XU Yitong1(1.StateKeyLaboratoryofContinentalDynamics,DepartmentofGeology,NorthwestUniversity,Xian710069,China;2.TechnologyApplicationDepartmentofTESCANChina,Shanghai201112,China)HIGHLIGHTS(1)TIMAcanbeusedtomeasurean

    36、dcalculatetheabundance,composition,morphology,particlesizedistribution,association,andliberationdegreeofusefulmineralsincomplexores.(2)The copper in low-grade copper slag is mainly distributed in chalcopyrite with low concentrations;thechalcopyriteisusuallyassociatedwithganguemineralsandneedsfurther

    37、grindingtoimprovetheliberationdegreeandrecoverygrade.(3)TIMAprovidesfast,quantitative,comprehensive,andaccurateinformationonprocessmineralogyparameterstoeffectivelymonitorandoptimizethesmeltingprocessofcomplexandlow-gradeores.ABSTRACTBACKGROUND:Thehigh-efficientutilizationofmineralresourcesisthelead

    38、ingresearchaspectofglobalminingdevelopment.Traditionalopticalandscanningelectronmicroscopyhavelimitationsinidentifyingtheoccurrenceofelementsinmanylow-gradeoresandusuallycannotprovidequantitativemineralogyinformation,hinderingtheimprovementofmineralprocessingoftheseores.Inrecentyears,automatedminera

    39、lquantitativeanalysissystemsbasedonscanningelectronmicroscopeandX-rayenergyspectrometerhavebeenincreasinglyappliedtostudycomplexoreformationandprocessmineralogy.OBJECTIVES:Toenrichandexpandtheapplicationofanautomatedquantitativemineralanalysissysteminprocessmineralogy.METHODS:Thelow-gradecopperslagf

    40、romacoppermineinChinaisanalyzedusingtheTESCANIntegratedMineralAnalyzier(TIMA).RESULTS:Theresultsshowthatthecontentofthecopperelement(0.08%)inthecopperslagisverylow,anditismainlydistributedinchalcopyrite,whichaccountsfor0.21%.Ganguemineralsincludequartz(47.6%),muscovite(10.10%),and calcite(9.88%).Cha

    41、lcopyrite usually occurs in irregular granular form and shows complexassociationswiththeabovegangueminerals.Theparticlesizeissmallandvariable,andtheparticlesof10-76moccupyalargeproportion.Themassofchalcopyritewithaliberationdegreebelow30%accountsfor85%ofthetotalmass,andtheoverallliberationdegreeislo

    42、w,sofurthergrindingisneededtoimprovechalcopyriterecovery.第4期张涛,等:矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用第42卷755CONCLUSIONS:Researchshowsthatfortheoresampleswithlowcontentofusefulminerals,smallparticlesize,andcomplexmineralogicalassociations,theautomatedmineralanalysissystem,includingTIMA,canproviderapid,quanti

    43、tative,comprehensive,and accurate process mineralogy parameter information,which is conducive tooptimizingtheoreextractionandsmeltingprocess,andhasanextensiveapplicationprospectinimprovingthecomprehensiveutilizationofmineralresources.KEY WORDS:TIMA;automatedmineralquantitativeanalysis;processmineral

    44、ogy;copperslag;liberationdegree参考文献 孟晶,杨洪英,张忠辉,等.青海阿斯哈矿区金矿工艺矿物学及金赋存状态研究J.有色金属(选矿部分),2022(5):17,15.MengJ,YangHY,ZhangZH,etal.Studyonprocessmineralogy and gold hosting state of gold deposits inQinghai Asha mining areaJ.Nonferrous Metals(MineralProcessingSection),2022(5):17,15.1杨波,杨莉,沈茂森,等.TIMA测试技术在白云鄂

    45、博矿床铌工艺矿物学中的应用J.矿冶工程,2021,41(6):6568.YangB,YangL,ShenMS,etal.ApplicationofTIMAin process mineralogy study of niobium minerals inBayan Obo depositJ.Mining and MetallurgicalEngineering,2021,41(6):6568.2陈福林,杨晓军,何婷,等.四川冕宁牦牛坪稀土矿尾矿 工 艺 矿 物 学 分 析J.现 代 矿 业,2018,34(8):110112.ChenFL,YangXJ,HeT,etal.Processmine

    46、ralogyanalysis of tailings from Mianning Maoniuping rareearth mine in Sichuan ProvinceJ.Modern Mining,2018,34(8):110112.3周乐光.工艺矿物学(第三版)M.北京:冶金工业出版社,2002:1-301.ZhouLG.Processmineralogy(The3rdedition)M.Beijing:MetallurgicalIndustryPress,2002:1-301.4肖仪武,方明山,付强,等.工艺矿物学研究的新技术与新理念J.矿产保护与利用,2018(3):4954.Xi

    47、aoYW,FangMS,FuQ,etal.Newtechniquesandconcepts in process mineralogyJ.Conservation andUtilizationofMineralResources,2018(3):4954.5GuY.AutomatedscanningelectronmicroscopebasedmineralliberationanalysisJ.JournalofMineralsandMaterialsCharacterizationandEngineering,2003,2(1):3341.6彭明生,刘晓文,刘羽,等.工艺矿物学近十年的主要

    48、进 展J.矿 物 岩 石 地 球 化 学 通 报,2012,31(3):7210217.PengMS,LiuXW,LiuY,etal.Themainadvancesinprocess mineralogy in China in the last decadeJ.Bulletin of Mineralogy,Petrology and Geochemistry,2012,31(3):210217.叶小璐,肖仪武.工艺矿物学在选厂流程优化中的作用J.有色金属(选矿部分),2020(4):1316,33.Ye X L,Xiao Y W.Role of process mineralogy inpr

    49、ocess optimization of concentratorJ.NonferrousMetals(Mineral Processing Section),2020(4):1316,33.8温利刚,贾木欣,王清,等.基于扫描电子显微镜的自动矿物学新技术BPMA及其应用前景J.有色金属(选矿部分),2021(2):1223.Wen L G,Jia M X,Wang Q,et al.New automaticmineralogy technology based on scanning electronmicroscopeBPMA and its application prospectJ.

    50、Nonferrous Metals(Mineral Processing),2021(2):1223.9陈倩,宋文磊,杨金昆,等.矿物自动定量分析系统的基本原理及其在岩矿研究中的应用以捷克泰思肯公司TIMA为例J.矿床地质,2021,40(2):345368.Chen Q,Song W L,Yang J K,et al.Principle ofautomatedmineralquantitativeanalysissystemanditsapplication in petrology and mineralogy:An examplefrom TESCAN TIMAJ.Mineral Dep


    注意事项

    本文(矿物自动定量分析系统在低品位铜矿渣工艺矿物学研究中的应用.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png