欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    利用带有改进算子矩阵的模块脉冲函数求非线性随机微分方程数值解.pdf

    • 资源ID:648474       资源大小:226.21KB        全文页数:10页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    VIP下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    利用带有改进算子矩阵的模块脉冲函数求非线性随机微分方程数值解.pdf

    1、应用数学MATHEMATICA APPLICATA2023,36(4):1059-1068Numerical Solution of NonlinearStochastic Differential Equations byBlock Pulse Functions with ImprovedOperator MatrixJIANG Guo(姜国),LIU Fugang(刘富钢),CHEN Dan(陈丹)(School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)Abstract:Thi

    2、s paper introduces an effective numerical method based on the blockpulse functions with improved operator matrix to solve the nonlinear stochastic differentialequations.The nonlinear stochastic differential equation is transformed into a set ofalgebraic equations by the improved operator matrix of b

    3、lock pulse function.Furthermore,we perform an error analysis and demonstrate that the method converges faster.Finally,numerical examples are used to support the method.Key words:Stochastic differential equation;Improved operator matrix;Block pulsefunctionCLC Number:O211.6AMS(2010)Subject Classificat

    4、ion:60H20;45D99;65C30Document code:AArticle ID:1001-9847(2023)04-1059-101.IntroductionTheoretical foundation of stochastic differential equations(SDEs)was established in the1960s.With the rapid development of the theory of stochastic analysis,SDE had been widelyused in system science,engineering sci

    5、ence and ecological science.However,it is difficultto obtain an exact solution for SDE.It makes sense to discuss numerical solutions to theequations110.Many authors have contributed in these areas.For instance,Akinbo et al.11introducedthe main concepts and techniques necessary for those wishing to p

    6、erform numerical experi-ments involving SDEs.PEI et al.12have discussed the stochastic averaging for SDEs.Kloe-den and Platen13discussed the numerical solution of SDEs.JIANG and Schaufelberger14applied block pulse functions(BPFs)to control systems.Heydari et al.15illustrated theaccuracy and effectiv

    7、eness of the generalized hat functions method.SANG et al.16proposedan effective numerical method to solve nonlinear stochastic It o-Volterra integral equations.On the other hand,Maleknejad et al.17introduced a method for solving stochastic Volter-ra integral equations,but the results are not very ac

    8、curate.Therefore,we use BPFs withReceived date:2022-12-25Foundation item:Supported by the NSF Grant of Hubei Province(2022CFD042,2023AFD013)Biography:JIANG Guo,male,Han,Hubei,professor,major in stochastic integral equation.1060MATHEMATICA APPLICATA2023improved operator matrix to solve the following

    9、general nonlinear SDEs(1.1)or(1.2).Theadvantage of this method is that the calculation is simpler and the numerical solution is moreaccurate.dv(t)=F1(t,v(t)dt+F2(t,v(t)dW(t),v(0)=v0,t 0,1),(1.1)orv(t)=v0+t0F1(s,v(s)ds+t0F2(s,v(s)dW(s),0 s t 1,(1.2)where v(t)is unknown stochastic processes,v0is the i

    10、nitial value,F1(t,v)and F2(t,v)areknown analytic functions,and W(t)is standard Brownian motion.In Section 2,we consider the properties and definition of the BPFs,and show the im-proved operator matrix and the stochastic integral operator matrix of the BPFs.In Section 3,the numerical method of the no

    11、nlinear integral equation(1.2)is obtained.In Section 4,erroranalysis is presented.In Section 5,some numerical examples illustrate the method.Section6 is the conclusion.2.PreliminaryIn this section,the improved operator matrix and the stochastic integral operator matrixof BPFs are introduced.We defin

    12、e the BPFs asp(t)=1,(p 1)h t 0,p=1,4are positive constants and k1,k2 0,1).ThenT0E(?em(t)?2)dt=T0E(?v(t)vm(t)?2)dt O(h2),T 0,1).(4.4)ProofFor(4.3),we obtainE(?em(t)?2)3E(?v0 v0m?2)+E(?t0F1(s,v(s)F1(sm,vm(s)ds?2)+E(?t0F2(s,v(s)F2(sm,vm(s)dW(s)?2).No.4JIANG Guo,et al.:Numerical Solution of Nonlinear St

    13、ochastic Differential Equations1065By using the Lipschitz conditions and Cauchy-Schwartz inequality,we getE(?em(t)?2)3E(?v0 v0m?2)+E(t0?F1(s,v(s)F1(sm,vm(s)?2ds)+E(t0?F2(s,v(s)F2(sm,vm(s)?2ds)3?v0 v0m?2+t0E(1?s sm?+3?v(s)vm(s)?)2ds+t0E(2?s sm?+4?v(s)vm(s)?)2ds3?v0 v0m?2+221t0?s sm?2ds+223t0E(?em(s)?

    14、2)ds+222t0?s sm?2ds+224t0E(?em(s)?2)ds.Then,we can getE(?em(t)?2)3?v0 v0m?2+2(21+22)t0?s sm?2ds+6(23+24)t0E(?em(s)?2)ds,orE(?em(t)?2)(t)+t0E(?em(s)?2)ds,(t)=3?v0 v0m?2+2(21+22)t0?s sm?2ds,=6(23+24).Letg(t)=E(?em(t)?2).We getg(t)(t)+t0g()d,0,1).According to Gronwalls inequality,we getg(t)(t)+t0e(t)()

    15、d,t 0,1).ThenT0g(t)dt=T0E(?em(t)?2)dt T0(t)+t0e(t)()d)dt=T0(t)dt+T0t0e(t)()ddtT0(t)dt+eTT0t0()ddt=3T0?v0 v0m?2dt+6(21+22)T0t0?s sm?2dsdt+eT3T0t0?v0 v0m?2ddt+6(21+22)T0t00?s sm?2dsddt:=3I1+6(21+22)I2+eT3I3+6(21+22)I4,1066MATHEMATICA APPLICATA2023by using Lemma 4.1 and Lemma 4.2,we haveIp wph2.SoT0E(?

    16、em(t)?2)dt 3w1+6(21+22)w2+eT(3w3+6(21+22)w4)h2 O(h2),where wp,p=1,4,are independent nonnegative constants.The proof is completed.5.Some ExampleIn this section,we show some numerical examples.Example 5.113Consider the nonlinear SDEdv(t)=z2cos(v(t)sin3(v(t)dt zsin2(v(t)dW(t),t 0,1),the exact solution

    17、isv(t)=arccot(zW(t)+cot(v0).This example is solved for z=120and v0=120.The error standard deviations VS,error means VE,and confidence intervals for error mean of Example 5.1 with m=32 andm=64 are given in Tab.5.1 and Tab.5.2,respectively.The simulation result of the exactand approximate solution of

    18、the Example 5.1 are given in Fig.5.1 for m=32 and are shownin Fig.5.2 for m=64.The Legendre wavelet Galerkin method uses the integral operatormatrix of the general BPFs,and obtains the absolute errors of the approximate solution bynumerical examples.Compared with the method described in this paper,i

    19、t can be seen fromthe error means of the table below that our accuracy rate(109)is higher than that of theLegendre wavelet Galerkin method(106)in 4.Tab.5.1When m=32,numerical results of Example 5.1tVEVS95%confidence intervalUpperLower1327.260847751093.630423871091.437647851081.4521695510102322.88356

    20、9941091.441784971095.709468491095.7671398910113321.569868191087.849340951093.108339011083.1397363810104322.461167441081.230583721084.873111541084.9223348910105324.307197271082.153598631088.528250611088.614394551010Tab.5.2When m=64,numerical results of Example 5.1tVEVS95%confidence intervalUpperLower

    21、1642.659910251091.329955121095.266622291095.3198205010112647.536324741093.768162371091.492192291081.5072649410103641.640491401088.202457001093.248172971083.2809828010104642.084357421081.042178711084.127027701084.1687148510105642.483186651081.241593321084.916709571084.966373311010Example 5.26Consider

    22、 the nonlinear SDEdv(t)=etsin(v(t)dt+etcos(v(t)dW(t),t 0,1).Let v0=3,the simulation results for m=32 and m=64 are severally given in Fig.5.3 and Fig.5.4.These two figs also show that the approximate solution fluctuates aroundthe mean orbit,where the mean solution is obtained by 104trajectories.No.4J

    23、IANG Guo,et al.:Numerical Solution of Nonlinear Stochastic Differential Equations106700.10.20.30.40.50.60.70.80.910.049950.050.050050.05010.050150.05020.05025Approximation solutionExact solutionFig.5.1When m=32,exact andapproximate solutions00.10.20.30.40.50.60.70.80.910.049950.050.050050.0501Approx

    24、imation solutionExact solutionFig.5.2When m=64,exact andapproximate solutions00.10.20.30.40.50.60.70.80.91-3.2-3.15-3.1-3.05-3-2.95-2.9-2.85-2.8-2.75Approximation solutionMean solutionFig.5.3When m=32,mean andapproximate solutions00.10.20.30.40.50.60.70.80.91-3.4-3.3-3.2-3.1-3-2.9-2.8-2.7-2.6-2.5App

    25、roximation solutionMean solutionFig.5.4When m=64,mean andapproximate solutions6.ConclusionThis paper proposes a numerical method for solving nonlinear SDEs based on BPFs.Byusing the improved operator matrix,simulation results show that the solution of this methodis very close to the exact solution.S

    26、ection 4 demonstrates an error analysis and comparesit with 2.The method of approximate solution convergence is faster.Some examples arelisted to verify the feasibility of the current method.References:1 HIGHAM D J.An algorithmic introduction to numerical simulation of stochastic differential equa-t

    27、ionsJ.SIAM Rev.,2001,43(3):525-546.2 YUAN C,MAO X.A note on the rate of convergence of the EulerMaruyama method for stochasticdifferential equationsJ.Stoch.Anal.Appl.,2008,26(2):325-333.3 MALEKNEJAD K,KHODABIN M,ROSTAMI M.A numerical method for solving m-dimensionalstochastic It oVolterra integral e

    28、quations by stochastic operational matrixJ.Comput.Math.Appl.,2012,63(1):133-143.4 HEYDARI M H,HOOSHMANDASL M R,SHAKIBA A,et al.Legendre wavelets Galerkin methodfor solving nonlinear stochastic integral equationsJ.Nonlinear Dyn.,2016,85(2):1185-1202.5 GUERRA J,NUALART D.Stochastic differential equati

    29、ons driven by fractional Brownian motionand standard Brownian motionJ.Stoch.Anal.Appl.,2008,26(5):1053-1075.6 ZHANG X.Stochastic Volterra equations in Banach spaces and stochastic partial differential equa-tionJ.J.Funct.Anal.,2010,258(4):1361-1425.7 WU J H,JIANG G,SANG X Y.Numerical solution of nonl

    30、inear stochastic It o-Volterra integralequations based on Haar waveletsJ.Adv.Differ.Equ.,2019(1):1-14.1068MATHEMATICA APPLICATA20238 TAHA M H,RAMADAN M A L,MOATIMID G M.Numerical solution of linear and nonlinearintegral equations via improved block-pulse functionsJ.Am.J.Math.Comput.Model.,2021,6(2):

    31、19-34.9 LI R,ZHANG W.Convergence and stability of the two classes of balanced Euler methods for s-tochastic differential equations with locally Lipschitz coefficientsJ.Int.J.Comput.Math.,2022,99(6):1224-1271.10 SHEN G,XIANG J,WU J L.Averaging principle for distribution dependent stochastic different

    32、ialequations driven by fractional Brownian motion and standard Brownian motionJ.J.Differ.Equ.,2022,321:381-414.11 AKINBO B J,FANIRAN T,AYOOLA E O.Numerical solution of stochastic differential equationsJ.Int.J.Adv.Res.Sci.,Eng.Tech.,2015,2(5):608-616.12 PEI B,XU Y,WU J L.Stochastic averaging for stoc

    33、hastic differential equations driven by fractionalBrownian motion and standard Brownian motionJ.Appl.Math.Lett.,2020,100:106006.13 KLOEDEN P E,PLATEN E.Numerical Solution of Stochastic Differential EquationsM.Berlin,Heidelberg:Springer,1999.14 JIANG Z,SCHAUFELBERGER W.Block Pulse Functions and Their

    34、 Applications in Control Sys-temsM.Berlin:Springer-Verlag,1992.15 HEYDARI M H,HOOSHMANDASL M R,CATTANI C,et al.An efficient computational method forsolving nonlinear stochastic It o integral equations:Application for stochastic problems in physicsJ.J.Comput.Phys.,2015,283:148-168.16 SANG X Y,JIANG G

    35、,WU J H.Numerical solution of nonlinear stochastic It o-Volterra integralequations by block pulse functionsJ.Math.Appl.,2019,32(4):935-946.17 MALEKNEJAD K,KHODABIN M,ROSTAMI M.Numerical solution of stochastic Volterra integralequations by a stochastic operational matrix based on block pulse functionsJ.Math.Comput.Model.,2012,55(3-4):791-800.利用带有改进算子矩阵的模块脉冲函数求非线性随机微分方程数值解姜国,刘富钢,陈丹(湖北师范大学数学与统计学院,湖北 黄石 435002)摘要:本文介绍基于改进算子矩阵的模块脉冲函数求解非线性随机微分方程的有效数值方法.利用模块脉冲函数的积分算子矩阵将非线性随机积分方程转化为代数方程.此外,我们进行了误差分析,并证明该方法收敛更快.最后,通过数值算例对该方法进行了验证.关键词:随机微分方程;改进算子矩阵;模块脉冲函数


    注意事项

    本文(利用带有改进算子矩阵的模块脉冲函数求非线性随机微分方程数值解.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png