欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    多区域互联电力系统的自适应滑模负载频率控制.pdf

    • 资源ID:628639       资源大小:657.36KB        全文页数:9页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    VIP下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    特别提醒    |    会员权益      免费领取5元金币
    1、推荐 2345浏览器】、 【 WPS办公】、填表 下载求助】 、 【 索取发票】 、 【 退款申请 】 、咨询 微信客服】、【 QQ客服】、【客服电话:4008-655-100 | 投诉/维权电话:4009-655-100】。
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    多区域互联电力系统的自适应滑模负载频率控制.pdf

    1、本文研究了一类计及电动汽车的电力系统中的负荷频率控制问题.首先,文章将电动汽车模型与传统的负载频率控制模型相结合,在未知扰动波动范围的条件下设计了自适应滑模控制律.其次,本文分别考虑了电网调频中的匹配扰动和不匹配扰动问题,并利用李亚普诺夫稳定性理论导出了匹配和不匹配条件下的系统稳定的充分条件.最后,通过两个区域电力系统的仿真结果表明,电动汽车作为电源和负载都可以提高电网的频率稳定性,所设计的控制器可以有效地调节电网的频率波动.关键词:电力系统;自适应滑模控制;电动汽车;负荷频率控制引用格式:王志鹏,陈向勇,刘华伟,等.多区域互联电力系统的自适应滑模负载频率控制.控制理论与应用,2023,40(

    2、7):1252 1260DOI:10.7641/CTA.2023.20341Adaptive sliding mode load frequency control formulti-area interconnected power systemsWANG Zhi-peng1,2,CHEN Xiang-yong1,2,LIU Hua-wei1,2,LIU Xue-qiang3,QIU Jian-long1,2(1.School of Automation and Electrical Engineering,Linyi University,Linyi Shandong 276005,Chi

    3、na;2.Key Laboratory of Complex Systems and Intelligent Computing in Universities of Shandong,Linyi Shandong 276005,China;3.Linyi Power Supply Company,State Grid Shandong Electric Power Company,Linyi Shandong 276005,China.)Abstract:This paper studies the load frequency control(LFC)of power system wit

    4、h electric vehicle(EV).Firstly,combining the EV model with the traditional load frequency control model,an adaptive sliding mode control law is de-signed under unknown disturbance fluctuation range.Secondly,the matched and unmatched disturbances in power networkfrequency modulation are considered,an

    5、d the sufficient conditions for system stability under matched and unmatched con-ditions are derived using Lyapunov stability theory.Finally,the simulation results of two regional power systems show thatelectric vehicles can improve the frequency stability of the power grid as both power source and

    6、load,and the designedcontroller can effectively adjust the frequency fluctuation of the power grid.Key words:power system;adaptive sliding mode control;electric vehicles;load frequency controlCitation:WANG Zhipeng,CHEN Xiangyong,LIU Huawei,et al.Adaptive sliding mode load frequency control formulti-

    7、area interconnected power systems.Control Theory&Applications,2023,40(7):1252 12601IntroductionPower systems aim to be environmentally friendly,resulting in a rapid integration of new energy sourcesandsystems12.Inthefuture,fuelvehicleswilleven-tually be replaced by electric vehicles due to the g

    8、row-ing popularity and demand of electric vehicles(EVs)in the market.EVs convert chemical energy to electricenergy,and their response speed is fast 3.EVs par-ticipating in load frequency control(LFC)of tradition-al power systems can improve the stability of load fre-quency.With the maturity of the v

    9、ehicle-to-grid(V2G)technology,it can be used as a distributed power supplyand load 4.In the V2G technology,EVs are regardedas power sources,providing measurement to the grid,and realizing a two-way flow of energy between theEVs and the grid.Owing to the uncertainty of new en-ergy and the limitations

    10、 of new energy generation tech-nology,it is necessary to use energy storage equipmen-Received 3 May 2022;accepted 21 April 2023.Corresponding author.E-mail:.Recommened by Associate Editor:LI Shi-hua.Supported by the National Natural Science Foundation of China(62173175,61877033)and the Natural Scien

    11、ce Foundation of Shandong Province(ZR2019BF045,ZR2019MF021,ZR2019QF004).No.7WANG Zhi-peng et al:Adaptive sliding mode load frequency control for multi-area interconnected power systems1253t to store the electricity generated by the new energy,and EVs have been used as energy storage equipmentto stor

    12、e the electricity,significantly lowering the con-struction and operating cost of the power grid.In thefuture,EVs in power grid frequency control will be in-evitable 5.With the promotion of low-carbon environmentalprotection and the green pollution-free concept,an in-creasing number of scholars and e

    13、ngineers have studiedtheloadfrequencyofacombinednewenergyandpowersystem.In this study,the LFC of power grid with EVsand the uncertain mismatch of the power grid was in-vestigated.In 6,the design of reliable LFC for uncer-tain multi-area delayed power systems was studied.As-suming that the parameter

    14、uncertainty is random,a setof lines were generated by constructing an appropriateLyapunov Krasovskii functional and combined it withWirtingers inequality to guarantee the stability andextended dissipation of multi-area power systems.Insome studies,various control methods and algorithmsfor frequency

    15、regulation of power system have beenproposed,such as fuzzy proportional integral deriva-tive(PID)control,particle swarm optimization(PSO),adaptive control algorithm,reinforcement learning al-gorithm and so on due to the uncertainty and random-ness of new energy sources.With the new energy wasconnect

    16、ed to the traditional power system,the operationof the power system will face great challenges.In 7,an adaptive fuzzy PID controller with filter based onPSO was proposed by using a new wind power gen-eration model.Differential evolution optimization wasused to optimize the controller parameters,it s

    17、ignifi-cantly increased the cost of the system.According tothe characteristics of new energy uncertainty,a non-linear dynamic recognition learning model was devel-oped.Recent studies have also shown that combiningonline reinforcement and model predictive control canimprove the learning ability of mo

    18、del and provide real-time control.However,the reward function must exact-lymatchthedesiredfunction,whichaddstothedifficul-ty of its implementation 8.In 9,a scheme based onload control was proposed to control systems that do nothavesufficientcontinuouscontrollableloadsbyline-by-line method.From 10,th

    19、e traditional automatic gen-eration control system model was improved by a fuzzyproportional integral(PI)approach to adaptively adjustthe PI control parameters of the controller.A decentral-ized fuzzy logic approach was proposed for wind pow-er interconnected systems to reduce the frequency de-viati

    20、on and power of the connected lines 11.In 12,an adaptive control law and parameter update algorithmwere established to interconnect LFC regions based onfuzzy logic.However,the design of fuzzy control lack-s systematicness and has no definite goal.From 13,LFCwasusedtostabilizethefrequencywithinthespe

    21、c-ified range in the three-area power system.The problemof the LFC for power systems with communication de-lays was solved by a dynamic output feedback schemein 14.In the case of actuator failures and communi-cation delays,the LFC of multiarea power systems wasdiscussed based on an event-triggered m

    22、echanism and afault-tolerant strategy in 15.Sliding mode control(SMC)is a control approachinpowergridsthatchangestheswitchingcharacteristicsof the system structure.Compared with the abovemeth-ods,it has the characteristics of fast response and no pa-rameter interference.This property enables the sys

    23、temto perform a small,high-frequency motion along thestate trajectory without interference externally and fromthe system parameters.SMC improves the robustnessof the system.SMC can be divided into the followingthree steps:1)the existence of sliding modes;2)a pointoutside the switching plane reaches

    24、the switching planein a finite time;3)to ensure the stability of sliding modemovement.In 16,an LFC method for single area pow-er system based on sliding mode control was presented.For an uncertain multi-area interconnected power sys-tem,appropriate switching surfaces were constructedfor each area,an

    25、d controllers were designed based onSMC in 17.In 18,through sliding mode control,thefrequency deviation of power plants in the power gridwith integrated electric vehicles is adjusted.SMC caneffectively reduce the ripple of the input current in ahybrid system of photovoltaic and wind energy in 19.In

    26、20,a tube-based model predictive control(MPC)was given to change the response of aggregated EVs.A control signal is generated to minimize the frequen-cy bias error while taking into account various opera-tions and physical constraints.In 21,an appropriatediscrete-time integral switching surface was

    27、designedto make multi-region interconnected system more ro-bust based on event triggered SMC.For fuzzy singu-lar perturbation system,a novel sliding mode methodwas presented in 22,which made the matched uncer-tain disturbances fully compensated.Furthermore,animproved adaptive fuzzy SMC law was const

    28、ructed toadapt to the unknown upper bound of matching uncer-tainty.In 23,an adaptive fuzzy sliding mode track-ing controller was designed by combining integral SMCwith adaptive control technology in the unmanned shipsystem to ensure the sliding mode tracking under theinfluence of all uncertainties.I

    29、n 24,a new slidingmode controller was designed to minimize frequencybias by controlling the speed regulator of the generatorset based on the observer.Inspired by the discussions,This paper will investi-gate the adaptive sliding mode LFC problem for multi-area interconnected power systems with EVs.Th

    30、e maincontributions are listed as:1)Combining electric vehicle and traditional power1254Control Theory&ApplicationsVol.40system model,it is more in line with the actual require-ments of energy utilization,and the designed control s-trategy is more flexible to frequency regulation.2)The stability

    31、 criterion of power system undermatched disturbance and mismatched disturbance arederived respectively,which further improves the robust-ness of the system.3)The upper bound of the external disturbance con-sidered is unknown,and its influence is effectively es-timated and compensated by using the ad

    32、aptive controlmethod.2Model description2.1Model of EVsA regional interconnection model is establishedbased on the traditional power system LFC model com-bined with EVs.Fig.1 shows an overview of the model.Specifically,an equivalence model of EVs is expressedby a transfer functionGev(s)=Kev1+sTev,(1)

    33、whereKevis the gain andTevis the time constant.?ev+11?evSOC?10%evFig.1 Equivalent model of EVThestateof charge(SOC)rangesfrom 10%to90%,and EVs can be safely charged and discharged.utisthe input power,andPevis the output power of EVs.WhenPev 0,EVs are in the discharge state,sup-plying power to the po

    34、wer system for the transmissionof electric energy.WhenPev 0,EVs demand elec-tric energy from the power system as loads are in thecharging state.WhenPev=0,EVs are in a static s-tate,indicating that they are not discharging or chargingat the moment.t06t16tm,10%SOC6SOCtm690%SOC,(2)wheret0,tmare the tim

    35、e when EVs connect to the pow-er grid and leaves the power grid,respectively.t1is thetime to participate in frequency regulation.SOCtmisthe state when EVs leave.Pev=1Tevut1TevPev.(3)It can be seen from the value ofPevthat posi-tive and negative represent different states of EVs as aload and power so

    36、urce.This is the biggest differencebetween EVs and other loads.2.2LFC model of power systemPower systems can be composed of a multi-areapower grid.To ensure the power systems safe and sta-ble operation,each area must be connected to each oth-er to coordinate and control the load frequency.Whenthe sy

    37、stem is stable,linearization can be conducted inthe minimum range of stable points.The LFC modelis composed of thermal power units and EVs.Fig.2shows the established LFC model of the EV intercon-nected power system.?1?EV control loop?11?+11?+11?ev?+11?ev?ev?ps?+1?ps?21?L?2Generator control loop?+?+?

    38、2?1Fig.2 Multi-area power grid model with EVsAs shown in Fig.2,i=j=1,2,N,Nisthe number of areas;fiis the frequency deviation ofthe system;Ptiis the output power deviation of a syn-chronous generator in a thermal power unit;Xtiis thedeviation of the position of the regulating valve of thegovernor of

    39、the thermal power unit;Peviis the outputpower deviation of the EVs;Teviis the time constantof EVs;Keviis the charging/discharging coefficient ofEVs;PLiisthefrequencydeviationofthedisturbanceload;Biis the regional frequency offset coefficient;Riis the coefficient of adjustment;uiis the signal that th

    40、econtroller gives to EVs;Tiis the steam turbine timeNo.7WANG Zhi-peng et al:Adaptive sliding mode load frequency control for multi-area interconnected power systems1255constant;Ttiis the time constant of the governor;Ptieis the power offset of the power line;Tpsiis the timeconstantofthesystem;Kpsiis

    41、thegain;iandjaretheangle deviations of different areas,respectively;Eiisfrequency deviation of different areas;a1anda2are thedistribution coefficient;andTijis the power synchro-nization factor of the contact line between areas.Based on the model in 25 and the EVs established,the model of the followi

    42、ng units is expressed asfi=KpsiTpsifi+KpsiTpsiPti+KpsiTpsiPeviKpsiTpsiPLi12KpsiTpsiGij(i j),(4)Pti=1TiPti+1Tixti,(5)xti=1TtiRifi1Ttixti+1Ttiuia1TtiEi,(6)Pevi=KeviTeviPevi+a2KeviTeviEi,(7)Ei=KiBifi+12Gij(i j),(8)i=2fi,(9)wherefi,Pti,xti,Pevi,Ei,iare the cha-nges of frequency,power output,governor val

    43、ve posi-tion,integral control and rotor angle deviation,respec-tively;Tpsi,Ti,Tti,Teviare the time constants of pow-er system,turbine,governor,respectively;isNj=1,j=i;Kpsi,Kiare the power system gain,speed regulationcofficient;Tijis connected gain betweeniandj.Thenwe get the following matrix form:xi

    44、(t)=Aixi(t)+Biui(t)+Gijxj(t)+FiPLi,(10)wherexi=fiPtixtiPeviEiiT,xiRniis the dimensions of system matries andAiis the coefficient matrix,Biis the input matrix andFiis the perturbation matrix,andAi=KpsiTpsiKpsiTpsi0KpsiTpsi0A1601Ti1Ti0001TtiRi01Ttia1Tti00000KeviTevia2KeviTevi0KiBi0000A56200000,Gij=0 0

    45、 0 0Kpsi2TpsiTij0 0 0 000 0 0 000 0 0 000 0 0 0Ki2Tij0 0 0 00,Bi=0 0 1Tti0 0 0T,Fi=KpsiTpsi0 0 0 0 0T,whereA16=12KpsiTpsiTijandA56=Ki2Tij.Then the system model with parameter uncertainty is asfollows:xi(t)=(Ai+Ai)xi(t)+(Bi+Bi)ui(t)+Gijxj(t)+(Fi+Fi)PLi,(11)whereAi,Bi,Fiare uncertain parameters andnor

    46、m-bounded.We definehi(t)=Aixi(t)+Biui(t)+(Fi+Fi)PLi,we have xi(t)=Aixi(t)+Biui(t)+Gijxj(t)+hi(t),(12)and the equivalent form of system is expressed as x(t)=Ax(t)+Bu(t)+h(t),(13)wherex(t)=x1(t)xN(t)T,u(t)=u1(t)uN(t)T,h(t)=h1(t)hN(t)TandA=A1G12G1NG21A2G2N.GN1GN2AN,B=diagB1,B2,BN.3Main results3.1Matche

    47、d conditionThissectionconsidersthematchingoperationofthepower grid under ideal conditions.We make the follow-ing assumptions to prove that the system is stable.Assumption 1AandBare fully controllable,and we defineh(t)=Bh(t).Assumption 2The unknown disturbanceh(t)isbounded,h(t)6q.First,the sliding su

    48、rface is selected ass=Cx(t)wt0C(A BH)x()d,(14)whereCandHare constant matrices,and meet the fol-lowing requirements:1)CBis a nonsingular matrix;2)A BH 0.Whens=0and s=0are satisfied,Eq.(13)reaches sliding surface.1256Control Theory&ApplicationsVol.40By combining Eqs.(13)(14),we can get s=C x(t)C(A

    49、 BH)x(t)=CAx(t)+Bu(t)+h(t)C(A BH)x(t)=CBu(t)+Ch(t)+CBHx(t).(15)When Assumption 1 is satisfied,the equivalent con-troller is derived asueq1(t)=(CB)1CBh(t)+CBHx(t)=h(t)Hx(t).(16)Substituting Eq.(16)into Eq.(13),we obtained x(t)=B(CB)1(CBh(t)+CBHx(t)+Ax(t)+h(t),(17)then one has x(t)=(A BH)x(t).(18)According toA BH 0.Proof Define


    注意事项

    本文(多区域互联电力系统的自适应滑模负载频率控制.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 服务填表 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-2024(办理中)    



    关注我们 :gzh.png  weibo.png  LOFTER.png