欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    基于深度学习的小麦条锈病病害等级识别.pdf

    • 资源ID:578684       资源大小:8.84MB        全文页数:9页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    VIP下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    基于深度学习的小麦条锈病病害等级识别.pdf

    1、郭伟,党梦佳,贾箫,等.基于深度学习的小麦条锈病病害等级识别 J.华南农业大学学报,2023,44(4):604-612.GUOWei,DANGMengjia,JIAXiao,etal.GradeclassificationofwheatstriperustdiseasebasedondeeplearningJ.JournalofSouthChinaAgriculturalUniversity,2023,44(4):604-612.基于深度学习的小麦条锈病病害等级识别郭伟,党梦佳,贾箫,何强,高春凤,董萍(河南农业大学信息与管理科学学院,河南郑州450000)摘要:【目的】为提高小麦条锈病危害

    2、程度分级精度,开展小麦条锈病病害等级自动化、准确、快速识别方法研究。【方法】在复杂田间条件下,使用手机拍摄图像,构建含有不同等级条锈病的小麦叶片数据集,利用GrabCut 与 YOLOv5s 相结合的方法进行小麦叶片与复杂背景自动化分割。为了增强 ResNet50 对表型特征的提取能力,增加 Inception 模块,依据划分的小麦条锈病病害等级标准,对小麦条锈病病害等级进行识别。采用准确率、查全率、查准率等评价指标分析改进的 ResNet50 模型(B-ResNet50)在数据集上的表现。【结果】GrabCut 与 YOLOv5s 相结合对大田复杂背景下的小麦叶片图像实现了自动、准确、快速地

    3、分割。B-ResNet50 识别小麦条锈病叶片的平均准确率为 97.3%,与 InceptionV3(87.8%)、DenseNet121(87.6%)、ResNet50(88.3%)相比,准确率大幅提升,比原始模型(ResNet50)高出 9 个百分点。【结论】利用深度学习对小麦条锈病病害等级进行识别,对防治小麦条锈病的精准施药具有重要意义,可为田间复杂条件下小麦条锈病的防治提供技术支持。关键词:小麦条锈病;图像分割;深度学习;病害等级;ResNet50;精准施药中图分类号:S435.121.42;TP391.41文献标志码:A文章编号:1001-411X(2023)04-0604-09Gr

    4、ade classification of wheat stripe rust disease based on deep learningGUOWei,DANGMengjia,JIAXiao,HEQiang,GAOChunfeng,DONGPing(CollegeofInformationandManagementScience,HenanAgriculturalUniversity,Zhengzhou450000,China)Abstract:【Objective】Inordertoimprovethegradeclassificationaccuracyofdamagedegreebyw

    5、heatstriperust,theautomatic,accurateandrapididentificationmethodofdamagedegreebywheatstriperustwasstudied.【Method】Undercomplexfieldconditions,imagesweretakenbymobilephones,anddatasetsofwheatleaveswithdifferentgradesofstriperustwereconstructed.ThecombinationofGrabCutandYOLOv5swasusedtoautomaticallyse

    6、gmentwheatleavesfromcomplexbackground.TheInceptionmodulewasaddedtoenhancetheabilityofResNet50inextractingphenotypicfeatures.Thediseasegradesofwheatstriperustwereidentifiedaccording to the classified disease grade standards of wheat stripe rust.The performance of the improvedResNet50model(B-ResNet50)

    7、onthedatasetwasanalyzedusingevaluationindexessuchasaccuracy,recalland precision.【Result】Wheat leaf images were segmented automatically,accurately and quickly by thecombinationofGrabCutandYOLOv5sundercomplexbackgroundinthefield.TherecognitionrateofB-收稿日期:20220624网络首发时间:2023030914:10:38首发网址:https:/ wo

    8、rds:Wheatstriperust;Imagesegmentation;Deeplearning;Diseasegrade;ResNet50;Precisespraying小麦条锈病是影响我国小麦产量的重要病害,病害发生严重时可造成小麦减产 50%60%,严重威胁粮食安全。及时发现小麦条锈病的侵染信息,对小麦条锈病的防治、提高小麦产量和品质具有重要意义。传统病害调查方法存在工作量大、工作效率低等弊端,且对调查人员的专业经验要求极高1-3。因而,研究成本低、准确度高且易操作的监测小麦条锈病病害等级的方法具有重要意义。利用无人机4-5、卫星6-7等遥感平台对小麦条锈病进行区域尺度和地块尺度的监

    9、测已经取得了一定的成果。因采集图像成像快、存储方便、易于传输、携带方便、操作简单快捷等优点,移动设备目前已普遍应用于病害识别领域。利用移动设备采集图片进行病害识别需要解决两方面问题:将病害从复杂背景中分割出来;进行病害类型识别。在背景分割方面,需要将目标物从复杂背景中分割出来,或当背景颜色与目标相似不能够有效地消除背景情况时,进行病害与背景的分割。余秀丽等8设计了一种基于支持向量机(Supportvectormachine,SVM)的小麦叶部常见病害识别方法,利用中值滤波法和 K 均值聚类算法实现图像的去噪及病斑分割,但是该方法对颜色相近病害类型的分割效果大打折扣。许高建等9采用基于阈值的最大

    10、类间方差算法(Otsu)提取小麦赤霉病病害部分,这种方法需要大量的预处理试验。陆海飞10提出了一种融合流行排序和能量方程的显著性检测算法,采用超像素方法将图像分块,但试验所用图片对光线要求过高,当背景颜色与目标相似时,不能够有效地消除背景。研究采用机器学习解决花生叶黑斑病、褐斑病分类,杂草分类,健康土豆和病害土豆分类等问题11-14,并不能满足本文在复杂背景下的小麦条锈病病害等级识别的检测条件。随着深度学习技术的不断发展,其应用在复杂背景分割与识别领域,并取得许多成果。戴雨舒等15利用数码相机获取小麦田赤霉病的 RGB 图像,语义分割小麦赤霉病图像,使用 Deeplabv3+网络模型检测识别的

    11、平均精度达96.92%。陈燕等16融合 ResNet50 和 Unet 网络,实现了对小麦茎秆截面尺寸、髓腔尺寸和维管束面积等微观结构参数的检测。顾博等17将 SLIC 算法融合到 GrabCut 自动分割算法中,可以较好地分割出玉米小斑病、大斑病和灰斑病。孔英会等18采用布尔显著性结合 GrabCut 分割算法,提出复杂背景下花卉识别与模型剪枝的方法,可以有效减少复杂背景对识别精度的影响。在病害识别方面,许景辉等19采用 VGG-16 模型识别玉米叶片病害。刘阗宇等20采用 Faster-RCNN 准确定位图像中葡萄叶片,去除背景因素对病害区域的干扰。龙满生等21利用迁移学习方法使用 Ale

    12、xNet 模型很好地实现油茶病害的识别,分类准确率高达 96.53%。Artzai等22用手机获取图像数据集,提出了 3 种不同的 CNN 架构,进行多种田间作物病害识别。Chen 等23选取 VGGNet进行水稻植株的分类预测。深度学习发展迅速,作为深度学习的代表算法之一,卷积神经网络具有较好的图像分类和识别能力。综上所述,以往的研究大多集中于作物是否患病以及病害类型的识别,而对作物病害等级的识别鲜有报道,由于病害等级识别属于更精细的图像分类,而小麦条锈病的不同病害等级之间差异小,基于细粒度的图像分类十分困难。本研究通过采集自然复杂背景条件下小麦条锈病不同病害等级图像,利用改进的 GrabC

    13、ut 图像分割方法从复杂背景中分割出小麦叶片,再采用改进的B-Resnet50 识别其病害等级,进而提高条锈病病害等级识别的速度和精度,以期实现精准施药,降低农药喷施量,达到提高小麦条锈病防治水平、增加小麦产量的目的。1 材料与方法 1.1 研究区许昌市地处中原,四季分明,气候温和,且拥有适量降水和充足的光照条件,有利于小麦生长。试验于 20212022 年在许昌的河南农业大学校园西北角农场(340822N,1131758E)进行,供试小麦的条锈病是自然发病,对于小麦条锈病的等级识别具有一定的普适性。研究区如图 1 所示。1.2 数据获取小麦叶片图像采集于抽穗期进行,在晴朗天气第4期郭伟,等:

    14、基于深度学习的小麦条锈病病害等级识别605和阴天均进行图像采集,尽可能还原小麦生长的自然环境。图像采集方式为垂直拍摄,拍摄时间09:0011:30,共拍摄 8658 张图像,原始图像尺寸为 30244032。采集设备为 MI8SE 手机 1200 万像素+50 万像素和 iPhone11 手机使用后置摄像头1200 万像素+500 万像素进行拍摄,拍摄出来的照片质量好、色彩饱满。由统计样本分布情况可知,样本主要涵盖健康小麦叶片和 5 级不同程度的病害图像,共 8658 张,其中,健康叶片图像累计 1400张,一级病害图像 1546 张,二级病害图像 1426张,三级病害图像 1401 张,四级

    15、病害图像 1803张,五级病害图像 1082 张。针对样本集展开编号,并制定相应的标签,通过 05 的自然数与类别标签健康及病害等级一至五相对应。1.3 小麦条锈病病害等级划分识别小麦条锈病病害等级首先需确定小麦条锈病病害等级标准,本文根据国家标准 NY/T1443.1200724,在小麦条锈病抗病育种专家指导下进行分级。不同病害等级症状如下:健康:叶面上不产生任何可见孢子堆;一级病害:叶面无夏孢子堆,出现小型枯死斑;二级病害:叶面出现枯死条点或条斑,夏孢子堆小且数量少;三级病害:夏孢子堆小至中型,数量稀少,夏孢子堆周围叶组织枯死或明显褪绿;四级病害:夏孢子堆较大,数量较多,夏孢子堆周围叶组织

    16、有褪绿现象;五级病害:夏孢子堆大而多,周围不褪绿。1.4 图像预处理对网络训练而言,统一的小麦条锈病病害图像规格尺寸便于开展卷积运算操作,图像中间区域集中了所有主要信息。所以,需在批量裁剪后再进行分类识别。在已知图像的基础上既要精简数据,也要确保主要病害图像信息不受影响,而后利用压缩或者扩大的处理方式。本文使用 Python编写脚本程序对图像进行预处理,为了减少图像无用信息、提高处理速度,在叶片不发生形变的情况下将图像像素统一修改为 640 像素480 像素(宽高)。为了防止因训练样本数量过少而导致模型发生过拟合现象,本研究对已有图像进行旋转、平移、缩放、镜像等操作扩充数据集。将田间采集的小麦

    17、病害图像构建的数据集按数量比 31 划分训练集和测试集。2 小麦条锈病等级识别方法 2.1 改进的 GrabCut 分割算法GrabCut 算法由英国微软研究院的 CarstenRother 于 2004 年提出25,是基于 GraphCut 的改进图像分割算法,在迭代过程中使用 RGB 颜色空间的高斯混合模型(Gaussianmixturemodel,GMM),为了通过迭代取得更好的分割结果,必须通过人工框选多次参数学习和迭代来实现良好的图像分割效果。V,E 若将待分割的图像用无向图 G来描述,则 V(Vertex)为全部顶点集合,E(Edge)为全部边的集合,普通的图包含顶点和边,而 Gr

    18、abCut 图则是在普通图上增加了 2 个顶点,标记为“S”和“T”,被称为终端顶点,其余顶点都与这 2 个顶点连接构成边集的一部分。每 2 个邻域像素之间的连接叫做 n-links。而普通顶点和这 2 个终端顶点的连接,构成边 t-links。GrabCut 中的 Cuts 表示 n-links 和 t-links 的集合,当边集被切断时,该图形的顶点被分为 2 个不相交的子集,从而使“S”和“T”图形分割开来,所以被命名为“割”。分割后当各边权值之和最小时,该最小割将图的顶点分成2 个不相交的子集 S 和 T,其中 sS,tT 和ST=V。这 2 个子集分别代表图像的前景像素集和背景像素集

    19、,这样就实现了完整的图像分割。n-links 和 t-links 用不同的计算方法生成权值,从而构1110440 ENN研究区 Study region研究区Study region060 120 180 240km1131500 E 1152520 E1110440 E 1131500 E 1152520 E1134756 E014.4828.9743.45m1134757 E 1134758 E1134756 E 1134757 E 1134758 E313840 N334900 N355920 N313840 N334900 N355920 N310822 N 310823 N 3108

    20、24 N310822 N 310823 N 310824 Nabc图 1 研究区概况Fig.1 General information of the study region606华南农业大学学报(https:/ 为背景,1 为前景目标;为图像前景与背景的灰度直方图,h(z,),=0,1;z 为图像灰度值数组,z=(z1,zn,zN),k 为高斯分量数目(一取般 k=5),k=k1,kn,kN,其中 kn就是第 n 个像素对应于哪个高斯分量,kn。E 是能量函数,当 E 取最小值便得到最佳分割;目标的相似程度,称为区域能量 U,表示一个像素属于背景标签 0 或目标标签1 的概率。将 2 个相邻

    21、顶点连接构成边,每个边的权值代表相邻像素点之间颜色的差异程度,即边界能量 V,用以表示能量函数的光滑项。GrabCut 这种能量最小化方案适用于具有给定初始矩形的图像,需要人工框选,使用最小切割操作得到最终分割,效率不高,本文提出了 YOLOv5s和 GrabCut 自动化组合的方式,使用 YOLOv5s 算法首先检测叶片位置并进行定位,快速检测出小麦叶片的矩形框来引导 GrabCut 输入,实现快速准确的自动化分割。在进行复杂背景的小麦条锈病叶片分割时,根据训练需求对训练集中的每一幅图像进行标记,在 YOLOv5s 训练期间需要一些关于图像的信息:包括被检测对象的边界框的中点坐标(x,y)、

    22、宽度(w)和高度(h)及其类定义。用 Python 脚本在小麦叶片周围绘制一个边界框。边框 x、y、w、h 是由边框的左上角(x1、y1)和右下角坐标(x2、y2)来决定的。YOLOv5s 能够迅速地检测和输出小麦叶片表型信息,并将其作为 GrabCut 的交互式输入,然后利用 GMM 模型不断迭代,直至收敛,最终得到小麦叶片的分割结果。图 2 为改进 GrabCut 的叶片分割算法的流程图。首先输入原始图像;YOLOv5s 检测叶片图像,获取矩形框;提取叶片表型信息,GrabCut 获取叶片矩形框;分别在初始前景和背景区域内创建 GMM;定义节点到终端顶点之间边的权值、节点之间边的权值,构建

    23、能量函数并求解;通过最大流最小割算法进行最小化分割的迭代,将选取的初始矩形框进行最小割。从图 3 改进的 GrabCut 分割结果来看,在包含复杂背景的叶片图像中,本研究改进的分割算法能够很好地将目标小麦叶片从裸地、杂草、无关麦穗和小麦叶片中分割开来。小麦叶片弯曲、倾斜时也能很好地保留目标小麦叶片的边缘信息。所以本研究改进的分割算法实现了复杂大田环境下小麦叶片背景的分割。2.2 图像分类方法2.2.1ResNet50在计算机视觉中,要想达到较好的网络效果需要加深网络,而网络愈深,所输入特征的“等级”也会随之提高。研究表明如果网络深度持续加深,梯度弥散/爆炸会阻碍模型训练26-27,影响模型的识

    24、别效果,导致网络无法收敛。每层输入归一化,这样能将可收敛的网络深度提升 10 倍。网络层数太深会产生退化问题,这是因为网络层数不断增加,使得网络空间越来越复杂,只能获得局部最优解。针对卷积层数越深造成的网络退化问题28-29,提出了一种基于深度残差网络的方法。如图 4 所示,残差结构采用了跨层连接的思想,通过增加快捷连接(Shortcutconnections)来实现恒等映射,并加入到卷积输出中,从而完全训练底层网络。如果输入 x 需要输出 H(x),那么常规的网络就是直接从 H(x)中学习输入至输出的映射,而使用跨层连接则学习的是 F(x)=H(x)x,也就是通过多个有参网络层对网络输入与输

    25、出数据之间的残差进行学习。在所述目标值 H(x)与所述输入值x 的差值,被称作残差(Residual)。如果神经网络的学习精度达到相对饱和,那么 F(x)足够小时,输出开始Start是 Yes否 NoYOLOBoundboxYOLOv5-Finetune图像 Image背景 Bbox叶片表型信息Leaf phenotype目标框掩膜Target mask高斯权重分类Gaussian weightclassification更新 GMMUpdate GMM高斯权重分类Gaussian weightclassification最大流算法MaxFlowTolerance1%耐受度1%更新掩膜Upda

    26、te mask退出循环Quit loop图 2 改进的 GrabCut 流程图Fig.2 Improved GrabCut flow charta:原图a:Original pictureb:改进的 GrabCut 分割结果b:Improved GrabCutsegmentation results图 3 部分数据处理前后Fig.3 The partial data before and after processing第4期郭伟,等:基于深度学习的小麦条锈病病害等级识别607就会近似地变为 H(x)=x,这就变成了恒等映射函数H(x)=x,因此,随着网络的深度增加,梯度不会消失,并且在反向传

    27、播中总是保持一个大的数值,在训练期间,底层的误差可以通过快捷连接传递到下一层,模型相当于退化为一个浅层网络,便于优化,从而达到更好的分类效果。2.2.2改进的 B-ResNet50本文设计一种 B-ResNet50 的小麦条锈病病害等级识别算法,以实现 6 种病害等级的分类。在小麦叶片病害图像识别中,夏孢子堆数目分布复杂多样,而且不同等级之间的病害特征差异不明显,为了更高效地提取小麦病害叶片更多的细微特征,提高类与类之间的识别准确率,增加 Inception 模块进行多尺度特征提取。Inception 模块如图 5 所示,包含 11、33、55 卷积,对神经网络层与层之间的卷积运算进行拓展,增

    28、加 2 个不同尺寸、大小各异的卷积核获得更多局部特征,使得卷积神经网络在提取特征过程中获得不同的感受野,实现多尺度特征的融合,提高模型的识别性能,更有利于小麦病害叶片不同细微特征的分类。在 Intel(R)Core(TM)i7-7700CPU3.6GHz、16GB 内存、NvidiaGeForceGTX1080Ti等试验条件下,使用 CUDA 加速,利用 PyTorch 构建基础网络,操作系统为 Windows10,Python 版本为 3.7。在基于改进的 B-ResNet50 残差网络模型训练时,设置迭代次数为 100,批大小为 64,学习率为 0.001。在 ResNet50 网络结构中

    29、,输入 1 张图片,首先通过 1 个步长为 2、大小为 77 的卷积核进行特征提取,从分割的图像中发现,对于小麦条锈病不同等级病害叶片来说,病害特征具有相似的视觉形状,需要提取更为精细的细粒度特征,因此需要的感受野也不同,B-ResNet50 残差网络模型在保留了原有网络结构的基础上增加了 2 个 Inception 模块,如图 6 所示,尺寸较大的卷积核有利于提取全局特xF(x)F(x)+xReLuReLu权重层 Weight layer权重层 Weight layer图 4 残差结构示意图Fig.4 Schematic diagram of residual structure卷积Filt

    30、er concatenation11 卷积11 convolutions33 卷积33 convolutions55 卷积55 convolutions11 卷积11 convolutions11 卷积11 convolutions11 卷积11 convolutions33 卷积33 max pooling网络层Previous layer图 5 Inception 模块Fig.5 Inception module012345CNN网络Inception模块CNN网络ResNet50残差网络Inception模块05 分别对应健康叶片及病害等级一至五0representshealthylea

    31、ves,15indicatediseasegrade15respectively图 6 改进的 B-ResNet50 的模型架构Fig.6 Model architecture of the improved B-ResNet50608华南农业大学学报(https:/ 卷积核的目的就是提取出输入图像更大邻域范围的信息。3 结果与分析 3.1 B-ResNet50 结果采用 05 对应等级小麦条锈病病害图像,利用本文改进的 GrabCut 分割算法进行预处理,设置丢弃率为 0.1,学习率为 0.001,设置批大小为 64,每次将 64 个样本数据送入模型训练,共训练 100 次迭代后,经过本文改

    32、进的 B-ResNet50 模型,准确率最高可达 97.3%。从图 7 可以看出训练集在接近20 次迭代就达到超过 95.0%的准确率。1008060准确率/%Accuracy迭代次数Epochs4020020406080100训练集 Training set测试集 Validation set图 7 训练集和测试集准确率的变化Fig.7 Accuracy changes in training set and validation set为了评估模型在小麦条锈病病害等级识别中的性能,使用查准率(Precision,P)、查全率(Recall,R)、准确率(Accuracy,A)、平衡 F1

    33、分数(F1-score)作为模型评价指标。其中,查准率表示预测为正例的集合中真正例的比例;查全率表示预测结果中真正例与实际所有正例的比值;准确率表示预测正确的样本数占总样本数的比例,指标可对模型整体性能进行评估。各评价指标计算公式如下所示:P=TPTP+FP,(2)R=TPTP+FN,(3)A=TP+TNTP+FP+FN+TN,(4)F1-score=2PRP+R,(5)式中,TP(Truepositive)表示模型中预测为正样例的数量;TN(Truenegative)表示模型中预测为负样例的数量;FP(Falsepositive)表示模型误报的数量,即将负样例预测为正样例的数量;FN(Fal

    34、senegative)表示模型的漏报数量。从图 8 混淆矩阵中可以清晰地看出小麦条锈病每一等级的识别情况,基于当前的样本集合,在三级病害识别过程中容易误判为四级病害,因为这2 级病害的小麦叶片上都有夏孢子堆,位于 2 个级别分界限附近的原始样本多,分级的夏孢子堆有没有枯死或明显褪绿在图像上是很难识别的。0123真实等级True grade预测等级Predicted grade3002502001501005004501234534810000134580000333370001733980000933660000534305 分别对应健康叶片及病害等级一至五0representshealthy

    35、leaves,15indicatediseasegrade15respectively图 8 改进后模型(BResNet50)混淆矩阵Fig.8 Confusion matrix of the improved model(BResNet50)表 1 显示模型的性能指标。小麦条锈病的一、五级病害识别准确度较高,而三、四级病害的识别性能稍微逊色,模型的总体准确率为 97.3%。3.2 数据增强对训练的影响数据增强有利于提高模型泛化能力。当数据样本数较小倾向于过度拟合训练时,增大训练数据集,让数据集表现出尽可能的多样化。在训练过程表 1 模型评价指标Table 1 Model evaluation

    36、 indicators等级1)Grade查准率%Precision查全率%Recall平衡F分数F1-score准确率%Accuracy099.799.70.99797.3198.697.20.979295.797.40.965399.695.50.955496.395.70.960598.398.60.9841)05分别对应健康叶片及病害等级一至五1)0representshealthyleaves,15indicatediseasegrade15respectively第4期郭伟,等:基于深度学习的小麦条锈病病害等级识别609中添加足够的样本特征,以使得训练的网络模型提高泛化能力、减少过拟

    37、合,本文主要通过平移、旋转、镜像等几何变换进行数据增强扩充数据集。原图和数据增强后得到的图像效果如图 9 所示。使用数据增强的方式对训练集进行扩充,与原本的训练样本进行数据均衡,最后与未进行数据均衡的试验结果进行比对,未经过数据增强训练集的准确率为 95.95%,测试集的准确率为 97.82%;经过数据增强后训练集的准确率为 98.43%,测试集准确率为 98.81%。不管是训练集还是测试集,准确率都得到了提升。其中,训练集提升了 2.48 个百分点,测试集提高了 0.99 个百分点。此外,相较于数据均衡后的试验结果,未进行数据均衡处理的训练集与测试集准确率的差值要更大一些。结果表明,通过随机

    38、翻转、旋转、平移等数据增强操作,可以提高数据的多样性,从而提高模型的鲁棒性和泛化性能,并改善模型的过拟合。3.3 不同网络模型对试验结果的影响为验证所提出的 B-ResNet50 残差网络模型的有效性,将此模型与常用的图像分类模型 InceptionV3、DenseNet121 以及 ResNet50 模型进行对比试验。在构建的小麦条锈病数据集上训练,使得每个模型具有相同的训练条件,直至模型收敛。在各模型训练过程中记录并输出每一次迭代的分类准确率,结果如图 10 所示,在数据集中,不同模型的精确度随训练轮数的增加而改变,模型不断学习小麦条锈病不同等级的特征,整体都表现出上升趋势,模型分类能力不

    39、断增强。其中,Dense-Net121网络对病害细粒度特征的适应性优势未能充分体现,识别准确率不高;InceptionV3 获得了较高的准确率;基于 ResNet50 的模型识别效果明显更好,本文提出的基于改进的 GrabCut 的 B-ResNet50 网络模型的准确率最高,是因为在原 ResNet50 模型的基础上增加了 Inception 结构模块,原模型提取了边缘轮廓特征,而加入的 Inception 结构通过不同尺寸的卷积核,同时对图像完成了细粒度特征提取,使网络模型可以提取更多小麦条锈病不同等级的细粒度特征,从而获取更丰富的特征信息,提升模型分类能力,提高分类准确率。a:原图a:O

    40、riginal imageb:平移b:Translationc:旋转 30c:30 flipd:旋转 90d:90 flipe:水平镜像e:Horizontal flipf:垂直镜像f:Vertical flip图 9 原图像和数据增强后的图像Fig.9 Original image and data augmented images1008060准确率/%Accuracy迭代次数Epochs4020020406080100B-ResNet50ResNet50InceptionV3DenseNet121图 10 不同模型在数据集上的准确率比对Fig.10 Accuracy comparison

    41、 of different models on thedata set610华南农业大学学报(https:/ 2 可见,InceptionV3 的准确率达到87.8%,训练时间最短;DenseNet121 的准确率为87.6%,训练时间长;ResNet50 的准确率为 88.3%,模型训练时间较长。本研究的模型训练时间长但是准确率最高,达到 97.3%。此外,B-ResNet50 也优于原 ResNet50,准确率提高了 9 个百分点,说明在原 ResNet50 网络模型中加入 Inception 模块可以有效提高模型分类的准确率。图 11 显示了各模型的混淆矩阵,可以看出各模型对某种小麦条锈

    42、病病害等级的识别能力。这些模型对二、三级病害的误识率较高,三级病害中ResNet50 网络的误识率最高;而五级病害的误识率最低。在模型的混淆矩阵中,B-ResNet50 具有更好的性能,并且具有较高的识别准确率,可以为小麦条锈病病害等级图像识别提供参考。B-ResNet50 网络模型在小麦条锈病叶片数据集上的识别准确率为 97.3%,与 InceptionV3(87.8%)、DenseNet121(87.6%)、ResNet50(88.3%)相比,准确率大幅提升。B-ResNet50 比 ResNet50 准确率提高了 9 个百分点。说明在原 ResNet50 模型的基础上增加 Incepti

    43、on 结构模块,通过不同尺寸的卷积核,对图像完成了细粒度特征提取,使网络模型可以提取更多小麦条锈病不同等级的细粒度特征,从而获取更丰富的特征信息,提升模型分类能力,提高分类准确率。表 2 模型准确率与速率对比Table 2 Model accuracy and rate comparison模型Model准确率/%Accuracy模型训练时间/hModeltrainingtimeInceptionV387.823DenseNet12187.627ResNet5088.326B-ResNet5097.3270123真实等级True grade预测等级Predicted gradea:DenseN

    44、et1213002502001501005004501234533640000731136000215288370001125286187001942292170005143280123真实等级True grade预测等级Predicted gradeb:InceptionV330025020015010050045012345338300004314510000122954900083728727700034295140000163160123真实等级True grade预测等级Predicted gradec:ResNet5030025020015010050045012345339500

    45、00332580000152981700044827656000739297130005243200123真实等级True grade预测等级Predicted graded:B-ResNet503002502001501005004501234534810000134580000333370001733980000933660000534305 分别对应健康叶片及病害等级一至五0representshealthyleaves,15indicatediseasegrade15respectively图 11 DenseNet121、InceptionV3、ResNet50 和 B-ResNet

    46、50 的混淆矩阵Fig.11 Confusion matrix of DenseNet121、InceptionV3、ResNet50 and B-ResNet50第4期郭伟,等:基于深度学习的小麦条锈病病害等级识别611 4 结论本文以小麦条锈病病害等级识别为目标,以移动设备拍摄的图像为数据源,利用改进型的 GrabCut算法将叶片与复杂背景进行分割,并对模型进行改进以实现对病害等级的准确识别,得出以下研究结果:利用 GrabCut 与 YOLOv5s 相结合的方法可以对小麦叶片图像实现自动、准确、快速地分割,且对复杂大田背景下的小麦叶片图像取得较好的分割效果;B-ResNet50 对小麦条

    47、锈病病害等级分类的平均准确率达到 97.3%,表明本方法可实现复杂环境下小麦条锈病病害等级的自动准确识别。参考文献:张建莉.小麦重大病虫害综合防治技术J.乡村科技,2019(34):97-98.1于静.小麦条锈病综合治理理论探析J.现代农业科技,2020(9):126.2吴海瑞.小麦条锈病的发生及防治J.农业技术与装备,2021(8):152-153.3冷伟锋,王海光,胥岩,等.无人机遥感监测小麦条锈病初探J.植物病理学报,2012,42(2):202-205.4SUJY,LIUCJ,HUXP,etal.Spatio-temporalmonit-oringofwheatyellowrustus

    48、ingUAVmultispectralim-ageryJ.Computers and Electronics in Agriculture,2019,167:105035.doi:10.1016/pag.2019.105035.5张竞成,李建元,杨贵军,等.基于光谱知识库的 TM 影像冬小麦条锈病监测研究J.光谱学与光谱分析,2010,30(6):1579-1585.6马慧琴,黄文江,景元书,等.基于 AdaBoost 模型和mRMR 算法的小麦白粉病遥感监测J.农业工程学报,2017,33(5):162-169.7余秀丽,徐超,王丹丹,等.基于 SVM 的小麦叶部病害识别方法研究J.农机化研

    49、究,2014,36(11):151-155.8许高建,沈杰,徐浩宇.基于 Lab 颜色空间下的小麦赤霉病图像分割J.中国农业大学学报,2021,26(10):149-156.9陆海飞.显著性检测方法及其在黄瓜病害图像分割中的应用研究D.南京:南京农业大学,2016.10陈煜.基于颜色特征的花生叶褐斑病及黑斑病图像识别技术研究D.郑州:河南大学,2019.11BAKHSHIPOURA,JAFARIA,NASSIRISM,etal.Weedsegmentationusingtexturefeaturesextractedfromwavelet sub-imagesJ.Biosystems Engi

    50、neering,2017,157:1-12.doi:10.1016/j.biosystemseng.2017.02.002.12PULIDO ROJAS C,SOLAQUE GUZMN L,VELA-SCO TOLEDO N.Weed recognition by SVM texturefeatureclassificationinoutdoorvegetablecropsimagesJ.IngenieraeInvestigacin,2017,37(1):68-74.13GRIFFEL L M,DELPARTE D,EDWARDS J.Usingsupport vector machines


    注意事项

    本文(基于深度学习的小麦条锈病病害等级识别.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-2024(领证中)    



    关注我们 :gzh.png  weibo.png  LOFTER.png