欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    有机物改性麦糟动态吸附水中五价砷的试验研究_刘春花.pdf

    • 资源ID:477900       资源大小:818.74KB        全文页数:4页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    VIP下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    提示    |    会员权益      领5元活动      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    有机物改性麦糟动态吸附水中五价砷的试验研究_刘春花.pdf

    1、2023 年 第 6 期 广 东 化 工 第 50 卷 总第 488 期 133 有机物改性麦糟动态吸附水中五价砷的试验研究有机物改性麦糟动态吸附水中五价砷的试验研究 刘春花(赣州格瑞工程咨询有限公司,江西 赣州 341000)摘 要随着各国工业化进程的不断加快,全球范围内砷污染成为一个突出的环境问题。本文采用有机物改性麦糟动态吸附处理水中五价砷。通过改变进水流速和砷离子初始浓度来评价动态吸附的性能。随着流速和初始浓度的增加,动态吸附柱穿透时间提前。分别采用 Thomas、Adams-Bohart 和 Yoon-Nelson 模型来分析动态吸附过程。从结果可以看出,实验数据和理论数据的趋势具有

    2、强而显著的相关性。关键词砷吸附;吸附柱;有机物改性麦糟;动态模型 中图分类号TQ 文献标识码A 文章编号1007-1865(2023)06-0133-04 Experimental Study on Dynamic Adsorption of Arsenic Pentavalent in Water by Organic Modified Spent Grains Liu Chunhua(Ganzhou Gerui Engineering Consulting Co.,Ltd.,Ganzhou 341000,China)Abstract:With the rapid development o

    3、f industrialization,arsenic pollution has become a prominent environmental problem in the world.The adsorption of arsenate was conducted in a continuous fixed-bed column by using organic modified spent grains(OMSGs).The column performances were evaluated by varying the influent flow rate and arsenic

    4、 ions initial concentration.The increased flow rate and initial concentration caused the column exhaustion time to occur earlier.The experimental column data were also expressed in column adsorption models,namely,the Thomas,AdamsBohart and Yoon-Nelson models.It can be seen from the results that ther

    5、e is a strong and significant correlation between the trends of experimental data and theoretical data.Keywords:arsenate removal;fixed-bed column;organic modified spent grains(OMSGs);dynamic modeling 砷(As)是一种类金属,由于它的很多特性与重金属相似,因此有时将其归为重金属之列。砷因其对植物、动物和人类的毒性而引起相关学者的关注。饮用水中的砷对人类健康的影响最大。在天然水中,砷主要以无机形式存在

    6、,如氧化五价砷或三价亚砷酸盐,其中 As(V)在地表水中占优势1-2。中国部分地区地下水砷浓度升高,主要是广泛存在于溶积岩中砷与硫形成矿物质,另外还有人为活动的结果,如农业(大量使用除草剂和杀虫剂)、以及包括采矿、冶炼、玻璃制造在内的工业有害废物的不规范处置3。由于通过饮用水长期接触低浓度的砷(50 g/L)也会导致皮肤、肺、血液和肾脏的致癌性疾病,以及皮肤角化过度和色素沉着过度4-5,2006年7月,中华人民共和国卫生部将饮用水的暂定指导值从50 g/L降至10 g/L6,与 1993 年世界卫生组织的饮用水含砷标准一致7。目前从水中去除砷有多种技术,包括离子交换、沉淀、混凝过滤和氧化/过滤

    7、8-12,而吸附技术仍然是解决砷问题的一种经济有效的方法之一13-14。目前,啤酒酿造过程中产生大量的废麦糟(SGs),但由于麦糟缺乏活性,很多以家禽、猪、鱼等单胃动物为主要牲畜的国家和地区都没有充分利用。再者,啤酒酿造业广阔的市场也导致废麦糟的产量与日剧增。有报道提到,废麦糟对含重金属镉、铅、铬()、铜等废水的研究也均有报道15-16。由于化学预处理可以通过去除基团或添加基团对麦糟表面进行改性处理,以期改善 SGs 的物理和化学性能。本文目的是考察有机物改性麦糟(OMSGs)动态吸附柱对水中砷离子的去除性能。用穿透曲线描述填充 OMSGs 的动态吸附柱吸附行为。考察了物理化学参数(初始砷浓度

    8、和流速)的影响。采用 Thomas、Adams-Bohart 和 Yoon-Nelson 模型分析了 As(V)的吸附穿透曲线。1 试验材料和方法试验材料和方法 1.1 五价砷溶液的配制 采用砷酸钠试剂(Na3AsO412H2O;99.0%)配制浓度为100 mg/L 的 As(V)储备液。储备液放置于冰箱中。用蒸馏水稀释储备液,得到不同浓度的 As(V)溶液。本研究中使用的所有试剂均为分析纯。1.2 废麦糟的改性处理 新鲜废麦糟品来自江西赣州一家啤酒厂。用蒸馏水洗净,60 烘干,即 SGs。先用固液比为 1 g/10 mL 的 2 mol/L NaOH 溶液在室温下对 SGs 进行预处理 2

    9、 h,然后在 65 下分别用 1 g/8 mL 的环氧氯丙烷、NaOH、乙醇搅拌 4 h,而后加入 30%三甲胺溶液,比例为 1 g/5 mL,在 65 搅拌 2 h,最后用大量去离子水冲洗至中性,在 80 的烘箱中干燥,得到有机物改性麦糟,命名为 OMSGs。1.3 动态吸附柱实验 试验用动态吸附柱为长 50 cm,直径 2.5 cm 的玻璃柱,配恒流变速蠕动泵(Longer-BT100),两端填充玻璃棉作支撑层。将 353 g OMSGs 吸附剂装入柱中,使得吸附层高度为 32 cm。试验开始前,先用去离子水从上至下湿润填充在动态吸附柱中的吸附剂,以赶走有机物改性麦糟颗粒间的滞留空气。按预

    10、定的时间间隔采集动态吸附柱实验出口的砷样品。考察As(V)初始浓度(1.0、2.0和6.0 mg/L)和流速(0.91、1.36和2.72 mL/min)对其穿透时间和吸收能力的影响。当出水砷浓度达到进水浓度的 100%时,停止动态吸附柱的操作。1.4 试验分析和计算 采用 0.1 M NaOH 和/或 0.1 M HCl 溶液调整含 As(V)溶液的 pH 值。用 pH 计测量溶液的 pH 值。采用电感耦合等离子体原子发射光谱仪(Intrepid XSP)测定 As(V)的浓度。由于砷具有较高的毒性,试验将穿透点设为 10%,以说明不同砷离子初始浓度和流速下的吸附能力和穿透时间。穿透时间(t

    11、b)定义为达到特定穿透浓度 Cb(初始浓度(C0)的 10%)的时间。通过绘制 As(V)离子的相对浓度来评价动态吸附柱的性能,相对浓度定义为出水 As(V)离子浓度与进水 As(V)离子浓度(Ct/C0)相对于流动时间 t 的比值。2 试验结果与讨论试验结果与讨论 2.1 废麦糟和有机物改性麦糟的红外光谱图 废麦糟(SGs)和有机物改性麦糟(OMSGs)的红外光谱FT-IR 如图 1 所示。从图 1 可以看出,对于 SGs,3276 cm-1处的宽频带属于羟基17,而 OMSGs 则移动到 3340 cm-1处。值得注意的是,除 SGs 外,OMSGs 出现了 1413 cm-1处,它属于

    12、C-N 的条带,说明引入了季胺基团。收稿日期 2022-10-07 作者简介 刘春花(1988-),女,江西赣州人,工程师,主要从事环境影响评价工作。广 东 化 工 2023 年 第 6 期 134 第 50 卷 总第 488 期 图图 1 废麦糟废麦糟(SGs)和有机物改性麦糟和有机物改性麦糟(OMSGs)的红外光谱的红外光谱 Fig.1 Fourier transform infrared spectra of SGs and OSGs 2.2 As(V)初始浓度对动态吸附柱穿透曲线的影响 保持其他试验条件不变的情况下,在不同初始砷浓度下测定 OMSGs 的动态吸附柱对 As(V)的吸附性

    13、能(如图 2 所示)。图图 2 砷初始浓度对砷在砷初始浓度对砷在 OMSGs 吸附穿透曲线的影响吸附穿透曲线的影响 Fig.2 Effect of initial concentration on the breakthrough curve of arsenic adsorption on OMSGs(Bed height 32 cm;flow rate 1.36 mL/min)由图2可以看出,当初始As(V)浓度从1.0增加到6.0 mg/L时,OMSGs 的动态吸附柱穿透时间明显缩短。对 As(V)的穿透吸附量为 0.500.66 mg/g。显然,在较高的初始 As(V)浓度下可以获得较

    14、高的动态吸附柱容量,这是由于初始 As(V)浓度越高其驱动力越大。吸附动力是由吸附剂上砷离子与溶液中砷离子之间的浓度梯度所提供。在较高的 As(V)浓度下,由于相对较小的传质区和更多的粒子内扩散控制过程,穿透曲线更尖锐。随着砷初始浓度的增加,吸附在 OMSGs 吸附剂上的砷与溶液中砷的浓度梯度增大。初始浓度越高,OMSGs 越早达到饱和,从而缩短了穿透时间。相反,初始砷浓度的降低延迟了穿透点,因为较低的浓度梯度导致输运速度较慢,接触时间较长。2.3 流速对动态吸附柱穿透曲线的影响 当动态吸附柱高为 32 cm,初始砷浓度为 2.0 mg/L 的条件下,考察了流速对动态吸附柱吸附穿透曲线的影响,

    15、如图 3所示。在柱高度不变的动态吸附柱中,随着流速的降低,穿透时间延长,表明接触时间延长,动态吸附柱的使用寿命延长。由于在较短的时间内砷离子与OMSGs吸附剂表面的官能团位交换较多,OMSGs柱在较高的流速下迅速达到最大容量。流速对吸附量也有影响。当流速从0.91 mL/min增加到2.72 mL/min时,As(V)的穿透吸附量从 0.88 mg/g 下降到 0.54 mg/g。从图 3 中还可以看出,在较高的流速下,动态吸附柱穿透曲线的形状更陡,说明 OMSGs 吸附剂颗粒内扩散效应更高,传质区较窄。流速越小,穿透曲线越平坦,说明膜传递阻力效应越明显,传质区越大,接触时间越长,动态吸附柱的

    16、使用时间越长。图图 3 流速对砷在流速对砷在 OMSGs 吸附穿透曲线的影响吸附穿透曲线的影响 Fig.3 Effect of flow rate on the breakthrough curve of arsenic adsorption on.(Initial arsenic concentration 2.0 mg/L;bed height 32 cm 2.4 动态吸附柱吸附模型研究 为了预测不同操作条件下的穿透曲线和吸附量,需要进行动态吸附柱的设计研究。已有几种理论模型用于描述动态吸附过程中的穿透行为。2.4.1 Thomas 模型 Thomas 模型具有非轴向色散和符合准二级可逆反

    17、应动力学的速率驱动力。Thomas 模型的线性化方程可表示为18。0max0ln(1)ThefftThtk C VCk qMCVV-=-(1)其中 kTh是 Thomas 速率常数(L/(mg min);qmax是 OMSGs吸附剂对砷的最大吸附量(mg/g);Veff是流量(mL)。在一定的流速下,由 ln(C0/Ct)-1对 Veff的曲线确定了动态吸附柱的动力学速率常数 kTh和最大吸附量 qmax。图 4 为Thomas 模型,表 1 为模型参数及相关系数。Thomas 模型假设内外扩散不是限制步骤,而且 Langmuir等温线是有效的。但实际吸附过程一般受相间传质和轴向分散的存在所控

    18、制。由表 1 可知,速率常数 kTh随流速的增加而增大,随砷离子初始浓度的增加而减小。而作为最大吸附量,qmax随砷离子初始浓度的增加而增大,但随流速的增加而减小。这是由于OMSGs吸附剂上吸附的砷离子浓度和溶液中砷离子浓度相差越大,其驱动力也越大,因此动态吸附柱对砷的吸附性能较好。R2值表明 Thomas 模型适合对溶液中 As(V)的吸附过程(表 1)。表表 1 Thomas 模型相关参数模型相关参数 Tab.1 Thomas model parameters v/(mL/min)M/g C0/(mg/L)KTh/(L/(mg min)*103 qmax/(mg/g)R2 1.36 1.3

    19、6 1.36 0.91 1.36 2.72 353 353 353 353 353 353 1.0 2.0 6.0 2.0 2.0 2.0 53.5 37.8 25.7 32.6 37.8 60.7 0.79 1.09 2.10 1.42 1.09 1.01 0.9728 0.9714 0.9838 0.9585 0.9714 0.9737 S Gs A S G s 1 A S G s 2 P S G s0 1 02 0 3 0 4 0 5 0 6 0去除率(%)不同改性麦糟S Gs A S G s 1 A S G s 2 P S G s0 1 02 0 3 0 4 0 5 0 6 0去除率(

    20、%)不同改性麦糟2023 年 第 6 期 广 东 化 工 第 50 卷 总第 488 期 135 图图 4 Thomas 模型曲线模型曲线 Fig.4 Thomas model plots 2.4.2 AdamsBohart 模型 基于动态吸附过程的初始状态,通常选择 Adams-Bohart模型来分析动态吸附柱的穿透曲线19。000ln()tABABtCkN Zk C tCv=-(2)其中 kAB是 Adams-Bohart 模型动力学常数(L/(mg min),N0和 Z 分别是饱和浓度(mg/L)和动态吸附柱高度(cm)。图 5 为不同砷离子初始浓度和流速下的 Adams-Bohart

    21、模型曲线。表 2 显示了 Adams-Bohart 模型的相关参数,包括 kAB、N0以及相关系数。从表 2 可以看出,Adams-Bohart 模型动力学常数 kAB和饱和浓度 N0依赖于砷初始浓度和流速。动态吸附柱的动力学常数 kAB数值随着流速的增加而增加(表 2)。图图 5 Adams-Bohart 模型曲线模型曲线 Fig.5 Adams-Bohart model plots 表表 2 Adams-Bohart 模型相关参数模型相关参数 Tab.2 AdamsBohart model parameters.v/(mL/min)Z/cm C0/(mg/L)kAB/(L/(mg min)

    22、*103 N0/(mg/L)R2 1.36 1.36 1.36 0.91 1.36 2.72 32 32 32 32 32 32 1.0 2.0 6.0 2.0 2.0 2.0 47.9 29.7 23.1 23.6 29.7 54.0 9.19 14.70 16.14 19.94 14.70 12.05 0.9620 0.9568 0.9766 0.9433 0.9568 0.9624 同时,动态吸附柱的 N0值随着砷初始浓度的增加而增加。当砷初始浓度增加时,由于吸附质离子负载较高,动态吸附柱中的 OMSGs 吸附剂相对容易穿透甚至耗竭。这些结果表明,吸附动力学是由动态吸附柱的物理传质贡献的

    23、。2.4.3 Yoon-Nelson 模型 Yoon-Nelson 模型20,是基于这样一个假设,即每个吸附质分子的吸附下降速率与吸附质吸附和吸附质在吸附剂上穿透的概率线性相关。该模型较简单,易于用于描述实际工业吸附过程。线性 Yoon-Nelson 模型方程式如下:0ln()tYNYNtCk tkCC=-(3)其中 kYN 是 YoonNelson 速率常数(min-1),是基于初始浓度50%的穿透时间(min),kYN和的数值可以通过0ln()ttCCC-对 t 的线性图得到。根据公式(3)计算出 Yoon-Nelson 模型的统计参数如图 6和表 3 所示。kYN随砷初始砷浓度和含砷溶液

    24、进水流速的增大而增大或减小。从表 3 的统计参数可以看出,理论穿透曲线与实验穿透曲线非常接近,说明 Yoon-Nelson 模型与 OMSGs 动态吸附柱吸附砷的实验数据吻合较好。图图 6 YoonNelson 模型曲线模型曲线 Fig.6 YoonNelson model plots 表表 3 Yoon-Nelson 模型相关参数模型相关参数 Tab.3 Yoon-Nelson model parameters.v/(mL/min)Z/cm C0/(mg/L)kYN/(min-1)*103 theo(min)*10-3 exp(min)*10-3 R2 1.36 1.36 1.36 0.91

    25、 1.36 2.72 32 32 32 32 32 32 1.0 2.0 6.0 2.0 2.0 2.0 53.5 75.7 154.2 65.7 75.7 121.5 205 143 48 270 143 66 210 169 51 250 169 70 0.9728 0.9666 0.9838 0.9585 0.9666 0.9737 广 东 化 工 2023 年 第 6 期 136 第 50 卷 总第 488 期 通过对实验数据的观察和相关分析,表明 Thomas、Adams-Bohart 和 Yoon-Nelson 这三种模型对动态吸附柱数据拟合良好。3 结语结语 本文研究了在动态模式

    26、下,通过改变含砷溶液进水流速和砷初始浓度,有机物改性麦糟(OMSGs)动态吸附柱对溶液中As(V)离子的吸附作用。试验结果显示,不同参数对动态吸附柱吸附砷离子穿透曲线具有一定的影响。含砷溶液进水流速和砷初始浓度的增加有加速动态吸附柱衰竭的趋势。因此,为了达到最佳的吸附性能,适当的吸附参数对动态吸附柱系统的运行非常重要。将动态吸附柱吸附动力学模型应用于试验数据,以进一步探究吸附机理。采用 Thomas 模型、Adams-Bohart模型和Yoon-Nelson模型来评价有机物改性麦糟(OMSGs)吸附剂和动态吸附柱设计的优缺点。通过对动态吸附柱参数的分析,得出了影响动态吸附柱性能的主要因素和影响

    27、 As(V)离子有效去除的最佳操作因素。参考文献参考文献 1Agusa T,Kunito T,Fujihara U,et alContamination by arsenic and other trace elements in tube-well water and its risk assessment to humans in Hanoi,VietnamJEnvironmental Pollution,2006,139:95-106 2RahmanaM M,Sengup taa M Kr,Ahameda SThe magnitude of arsenic contamination i

    28、n groundwater and its health effects to the inhabitants of the Jalangione of the 85 arsenic affected blocks in West Bengal,IndiaJScience of the Total Environment,2005,338:189-200 3汪大翬,徐新华,宋爽工业废水中专项污染物处理手册M北京:化学工业出版社,2000:66-79 4曹会兰砷对人体的危害与防治J化学世界2003,10:559-560 5Smith A HCancer risks from As in drin

    29、king waterJEnviron Health Persp199297:259-262 6生活饮用水卫生标准(GB 5749-2006)7Guidelines for Drinking Water Quality,Vol1,Recommendations,41,World Health Organization,Geneva,Switzerland,1993 8杨洁,顾海红,赵浩,等含砷废水处理技术研究进展J工业水处理2003,23(6):14-17 9Saha J C,Dikshit A K,Bandopadhyay M,et al,A review of arsenic poisoni

    30、ng and its effects on human healthJ,Crit Rev Env Sci Technol,1999,29:281 10Mukhopadhyay R,Rosen B PArsenate Reductases in Prokaryotes and EukaryotesJEnvironmental Health Perspectives,2002,110:745-748 11Karim M D MasudArsenic in groundwater and health problems in BangladeshJWater Research,2000,34:304

    31、-310 12Erdogan Ergican,Hatice Gecol,Alan FuchsThe effect of co-occurring inorganic solutes on the removal of arsenic(V)from water using cationic surfactant micelles and an ultrafiltration membraneJDesalination2005,181:9-26 13Kundu S,Gupta A KAnalysis and modeling of fixed bed column operations on As

    32、(V)removal by adsorption onto iron oxide-coated cement(IOCC)JJ Colloid Interface Sci,2005,290:52 14Jiang J Q Removing arsenic from groundwater for the developing world-a reviewJWater Sci Technol,2001,44:89-98 15Low K S,Lee C K,Low C HSorption of chromium(IV)by spent grain under batch conditionsJJ Ap

    33、pl Polym Sci,2001,82(9):2128-2134 16Shuguang Lu a b,Stuart W GibbCopper removal from wastewater using spent-grain as biosorbentJ Bioresource Technology,2007,99:1509-1517 17Weng S P Analysis of Fourier Transform Infrared Spectrometry,Chemical Industry Press,Beijing,2009 18Thomas H G,Ann N YAcad Sci,1

    34、948,49:161 19Aksu Z,Gnen FProcess Biochem,2004,39:599 20Pilli S R,Goud V V,Mohanty K Desalination Water Treat,2012,50(1-3):115 (本文文献格式:刘春花有机物改性麦糟动态吸附水中五价砷的试验研究J广东化工,2023,50(6):133-136)(上接第 154 页)这是第一次处理 304 蒸汽发生器管材料,在实际去污操作中发现其氧化层的厚度远比预期的厚,在低氧化层中铬含量很高。氧化层厚度达 12 m,其中铬含量大于 80%。在规划阶段,AREVA 公司基于经验的数据不可能

    35、开展工件验证测试。核电厂去污过程中修正程序,并成功应用去污。在给定去污条件下,即使是现场去污,也显示了氧化还原去污体系的优势。最终所得整体去污系数平均值大于 350(每个蒸汽发生器8 个测量点的平均值)。所有的去污目标已超额实现。这再次表明放射性取样和工件测试作为规划的一部分是多么重要。通过应用这种测试,核电厂现场工艺调整可以省略。4.3 瑞典沸水堆全系统去污Barsebck 1/2 机组 由于政治原因 Barsebck 核电厂两个机组被永久停堆,其中一号机组于 1999 年停堆,二号机组于 2005 年停堆。由于最后储存设施的可用性,退役计划在 2017 年前不开始。这里的目标是在 Bars

    36、ebck 停堆后短时间内执行全系统去污,使得其在剩余的服务时间内集体辐射剂量最小化直到退役活动开始,也是为了即将到来的退役计划。两个机组核电厂具有相同的工程过程,也应用相同的去污方法。因此在计划阶段产生许多协同效应。去污路径包括主要的核电厂系统和部件:(1)反应堆压力容器下部:内部卸下的燃料移除。(2)再循环系统(四回路)。(3)余热排出系统。(4)反应堆水净化系统。对于两个机组都执行了3个高碘酸氧化还原去污紫外循环。主系统管道和部件有101个剂量率测量点。最小去污系数50是去污的目标,该目标已实现。部件的主要剂量率低于25 Sv/h。5 结论及建议结论及建议 根据目前国外核电厂退役经验,针对

    37、一回路系统的去污,采用全循环去污方法进行去污可以取得理想的效果;为减少退役期间二次废物的产生,该系统的去污对象不包括反应堆压力容器。由表 1 对比及实际经验可知,利用 DFD 去污技术产生的废液多于利用 CORD UV 技术产生的放射性废液,但废液量增加量并不太大;而利用 CORD UV 技术难度及耗时更长。考虑到我国目前核电站退役经验较少,因此推荐待我国核电站退役时,可采用 DFD 技术进行一回路系统去污。目前距我国核电站开始退役还有十余年的时间,可提前开展相关科研工作,研究并掌握相关去污配方、去污工艺流程,明确去污技术方案,设立合适的去污通路,将压力容器短接,以减少放射性废液的产生量及其放

    38、射性水平,最终用于指导核电站退役时一回路系统去污方案设计与实施。参考文献参考文献 1Christian Topf Full System Decontamination(FSD)with the CORD Family prior to Decommissioning-Experiences at the German NPP Obrigheim 2007CIYNC 2008,Interlaken,Switzerland,2008,219:20-26 2Ronald MorrisChemical Decontamination for Decommissioning(DFD)and DFDX

    39、CProceedings of the ASME 13th International Conference on Environmental Remediation and Radioactive Waste Management ICEM2010,2010:3-7 3Geun Young Park,Chang-Lak Kim Chemical Decontamination Design for NPP Decommissioning and Considerations on its Methodology J JNFCWT,2015,13(3):187-199 4Christoph S

    40、tiepani Full System Decontamination(FSD)prior to DecommissioningCProceedings of the ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management ICEM2011,2011:25-29 5Christoph Stiepani AREVA NP Decontamination Concept for Decommissioning-A Comprehensive Approach Based on Over 30 Years ExperienceCProceedings of the ASME 13th International Conference on Environmental Remediation and Radioactive Waste Management ICEM2010,2010:3-7 (本文文献格式:郑莉,韩丽,鲍芳核电站一回路退役技术研究J广东化工,2023,50(6):153-154)


    注意事项

    本文(有机物改性麦糟动态吸附水中五价砷的试验研究_刘春花.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 服务填表 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-2024(办理中)    



    关注我们 :gzh.png  weibo.png  LOFTER.png