欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    压敏电阻的热应力分析及结构优化_王婧.pdf

    • 资源ID:477281       资源大小:484.07KB        全文页数:6页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    开通VIP
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    压敏电阻的热应力分析及结构优化_王婧.pdf

    1、2023 年第 2 期仪 表 技 术 与 传 感 器InstrumentTechniqueandSensor2023No2基金项目:山 西 省 重 点 研 发 计 划 项 目(202102030201001,202102030201009)收稿日期:20220825压敏电阻的热应力分析及结构优化王婧1,雷程1,梁庭1,王丙寅2,陈国锋2(1中北大学,动态测试技术国家重点实验室,山西太原030051;2内蒙古动力机械研究所,内蒙古呼和浩特010000)摘要:为解决 SOI 压阻式压力传感器敏感芯片上电阻条因热应力堆积导致的断裂问题,通过在电阻条上容易堆积应力的弯折处建立平滑倒角的方式来降低热应力

    2、堆积,提高电阻条的热稳定性。利用多物理场耦合分析软件对有无倒角的 2 种结构进行仿真分析,仿真结果表明:在常压 450 条件下,倒角的存在使得电阻条弯折处的应力比无倒角的结构降低了 50%。在 300 测试环境下无倒角电阻发生断裂,而有倒角电阻在 300 测试以及之后的温度测试中结构完好,电压输出正常,表明倒角的设计有助于提高敏感芯片的耐温性,从而提高传感器的热稳定性。关键词:压阻式压力传感器;热应力;敏感芯片;电阻条;耦合仿真;优化设计中图分类号:TP212文献标识码:A文章编号:10021841(2023)02004406Thermal Stress Analysis and Struct

    3、ure Optimization of PiezoresistorWANG Jing1,LEI Cheng1,LIANG Ting1,WANG Bing-yin2,CHEN Guo-feng2(1North University of China,State Key Laboratory of Dynamic Testing Technology,Taiyuan 030051,China;2Inner Mongolia Power Machinery Institute,Hohhot 010000,China)Abstract:In order to solve the fracture pr

    4、oblem of the resistance strip on the sensitive chip of SOI piezoresistive pressuresensor due to thermal stress accumulation,a smooth chamfer was established at the bend of the resistance strip that is easy to ac-cumulate stress to reduce the thermal stress accumulation and improve the thermal stabil

    5、ity of the resistance stripThe multi physi-cal field coupling analysis software was used to simulate the two structures with and without chamferingThe simulation resultsshow that the stress at the bending point of the resistance bar is reduced by 50%compared with the structure without chamferingunde

    6、r normal pressure and 450 Under the test environment of 300,the non chamfered resistance breaks,while the cham-fered resistance has intact structure and normal voltage output in the test at 300 and the subsequent temperature test,which in-dicates that the chamfered design is helpful to improve the t

    7、emperature resistance of the sensitive chip,thus improving the thermalstability of the sensorKeywords:piezoresistive pressure sensor;thermal stress;sensitive chip;resistance bar;coupling simulation;optimized design0引言随着 MEMS 技术的发展,压力传感器被广泛应用于工业领域。而在一些特殊场合,例如各种轮船和汽车发动机、航空航天飞行器等在高温环境下的压力测量,常规的常温压力传感器难

    8、以满足其稳定工作的要求,此时就需要一种能够在高温环境下正常工作的传感器将压力信息传递出来,耐高温压力传感器可以很好地解决这一问题12。SOI 压阻式压力传感器凭借其在高温环境下优异的电学性能和力学性能被广泛应用于制作耐高温压力传感器。张晓莉等3 报道了一种通过注氧隔离技术研制的 SOI 压力传感器,可用于测量1 000 MPa 以下的压力。但对于压力传感器在高温下失效的报道还比较少,在压力传感器的设计过程中,关键结构为位于敏感膜上的电阻条,其可靠性决定着传感器最终的稳定性。而 SOI 压阻敏感芯片中间有氧化硅隔离层,顶层器件层和底层支撑层为硅层,并且隔离层和器件层很薄,因此在高温环境下,由于硅

    9、和氧化硅材料之间的热膨胀系数不匹配产生的热应力容易导致器件层上的敏感电阻断裂,从而使得传感器失效46。因此,减小和抑制热应力,是提高传感器高温稳定性的关键79。本文提出了一种可以降低热应力堆积的压敏电阻结构,通过在电阻条上容易堆积应力的弯折处建立平滑倒角的方式来减小热应力的堆积。以此提高传感器在高温环境下的热稳定性。第 2 期王婧等:压敏电阻的热应力分析及结构优化451压力传感器敏感芯片的结构设计11压敏电阻工作原理压阻式压力传感器基于硅的压阻效应原理,采用硅薄膜作为压敏元件,4 个等值硅掺杂电阻连接成惠斯登电桥作为转换元件,当外界的压力作用于硅薄膜上时,膜片表面产生形变,表面应力分布发生变化

    10、,使得基于电阻组成的电桥失去平衡,从而输出电信号,实现了从压力信号到电压信号的转换1011。图 1 中 Uin为电桥供电电压,14为压敏电阻,14为受到压力后变化的电阻阻值,U+和 U为电压输出端1214。图 1惠斯登电桥输出电压和电阻的关系表达式为Uout=(1+11+1+2+24+43+3+4+4)Uin(1)12压敏电阻结构优化基于惠斯登电桥工作的压敏芯片,主要通过压敏电阻感应压力进而转化为电信号输出。因此,压敏电阻的工作可靠性和稳定性是制约其工作的关键因素。如图 2 所示,以芯片结构尺寸 3 mm3 mm,背腔尺寸为 1 mm1 mm 为建模基础,设计高温压力芯片。芯片共有 3 层,底

    11、层为玻璃层和支撑层键合形成的绝压腔;中间以氧化硅作为隔离层,防止由于高温导致 PN结产生反向漏电流,从而使得压敏电阻不能正常工作;顶层为硼掺杂的器件层,敏感电阻、金属引线以及焊盘都位于这一层上。图 2SOI 压力传感器芯片结构图 3 为电阻条结构放大图,纺锤形结构中间位置为压敏电阻,两边突出的方形为欧姆接触区。在工作过程中,压敏电阻弯折处会由于应力的堆积发生断裂,如图 4 所示。(a)原结构(b)优化后结构图 3电阻条结构图 4电阻条断裂为解决此问题,对电阻条弯折位置进行倒角设计,如图 3(b)所示。2仿真与分析根据表 1 传感器的各参数厚度值,按照设计的芯片尺寸,通过 Solidworks

    12、三维设计软件进行高温 SOI压力传感器芯片的结构建模,将该模型导入仿真软件进行模拟仿真分析。表 1芯片参数值材料弹性模量/GPa泊松比热膨胀系数/1061密度/(gcm3)硅17002835233氧化硅7001705220考虑到在高温高压环境下,传感器受到的应力为压力产生的应力和热应力的复合应力,将建立的模型导入有限元耦合仿真软件,并对 2 种结构的压敏芯片所受到的复合应力进行分析。针对常温不同压强以及恒定压力不同温度 2 种仿真环境进行模拟仿真分析。常温环境下,按照 100 kPa 的压强梯度进行100 kPa15 MPa的仿真试验,如图 5、图 6 所示。通过图 5(b)和图 6(b)的对

    13、比,能够明显看出,在常温变压情况下,2 种不同结构同位置的应力集中情况发生了变化,有倒角的结构应力分布相对均匀,验证了倒角的存在可以对压力变化的应力堆积起到改善作用。在常温条件下,2 种结构弯折处所受应力与所受压强关系如图7 所示,随着压强的增大,倒角结构对于改善应力堆积的效果越明显,当压强达到 15 MPa 时,原有结构弯折处产生的应力为 10065 MPa,应变为81998 nm,增加倒角后,此处的应力为 36141 MPa,应变为 78889 nm,此时的应力低于原有结构的 1/3。46Instrument Technique and SensorFeb2023(a)应力分布全局图(b)

    14、电阻条位置应力分布图图 5常温 15 MPa 下无倒角结构应力分布图(a)应力分布全局图(b)电阻条位置应力分布图图 6常温 15 MPa 下有倒角结构应力分布图图 7常温下不同结构弯折区随压强变化应力图常压环境下,按照 50 的温度梯度,在 450 以下进行仿真试验,如图 8、图 9 所示。通过图8(b)和图 9(b)的对比,能够明显看出,在常压变温情况下,2 种不同结构同位置的应力集中情况发生了变化,有倒角的结构应力分布相对均匀,验证了倒角的存在可以对温度变化的应力堆积起到改善作用。在恒压条件下,2 种结构弯折处所受应力与温度关系见图 10。随着温度的升高,倒角结构对于改善应力堆积的效果越

    15、明显。当温度达到 450 时,原有结构弯折处产生的应力为 86673 MPa,应变为 130 m,增加倒角后,此处的应力为 35745 MPa,应变为 129 m,此时的应力低于原有结构的 1/2。综合仿真结果可以看出,电阻条弯折处倒角的设计对于缓解应力集中有良好的效果,对于压力引起的应力降低了 30%,对于温度产生的应力降低了 50%,提高了压敏电阻在高温高压环境下的结构稳定性。3制备与测试SOI 压阻式压力传感器敏感芯片的制备过程如图11 所示。清洗:选取 SOI 晶圆,进行无机清洗。掺杂:对 SOI 基片的顶层硅进行硼元素掺杂。重掺杂欧姆接触区:湿法腐蚀电极孔并对欧姆接触区进行重掺杂。刻

    16、蚀压敏电阻:利用反应离子刻蚀方法(IE)刻蚀压敏电阻。制备金属引线和焊盘:溅射钛铂金金属层后剥离形成金属引线和金属焊盘。背腔刻蚀:背面进行深硅刻蚀形成压力敏感膜。阳极键合:背腔处与玻璃阳极键合形成密闭绝压腔。制备过程如图 11 所示。第 2 期王婧等:压敏电阻的热应力分析及结构优化47(a)应力分布全局图(b)电阻条位置应力分布图图 8常压 450 下无倒角结构应力分布图(a)应力分布全局图(b)电阻条位置应力分布图图 9常压 450 下有倒角结构应力分布图图 10常压下不同结构弯折区随温度变化应力图制备完成的芯片如图 12(a)所示,2 种结构除电阻条弯折位置结构不同外无其他不同,图 12(

    17、b)为原有结构无倒角芯片局部放大图,图 12(c)为优化结构有倒角芯片局部放大图。2 种不同结构的芯片各选 3 个,放置在同种环境下进行对比测试。对 2 种不同结构的 SOI 压力芯片进行高温试验,其中,1#3#为原有结构的芯片,4#6#为新版结构,将 1#6#芯片置于 TP 快速退火炉中,图 11敏感芯片制备流程图如图 13 所示,在保持真空状态下,按照 50 的温度梯度进行 50450 的试验,每个温度维持 1 h 后,检测记录芯片的输出电压及电阻阻值。48Instrument Technique and SensorFeb2023(a)芯片整体图(b)无倒角芯片(c)有倒角芯片图 12敏

    18、感芯片实物图图 13TP 快速退火炉从图 14(a)可以看出,当温度达到 400 时,输出电压发生了明显突变,通过去除异常输出后,如图 14(b)所示,4#、5#、6#传感器的输出电压相对接近,芯片的一致性良好。通过测量其电阻,得出不同温度工作后对应的电阻变化率,如图 15 所示,1#、2#、3#芯片的电阻在 350时电阻变化率均产生了不同程度的突变,随着温度的升高,变化越来越大;4#、5#、6#芯片的电阻变化率在整个温度变化中基本维持在 0 左右。结合 1#芯片在 400 时输出电压突降可知,400 输出电压突变是由于此时电阻发生了突变。从图 14 可以看出,4#、5#、6#芯片相比于 1#

    19、、2#、3#来说,输出电压波动范围小,芯片的一致性优,在测试过程中,电压输出稳定。经过结构的改善,解决了高温环境下应力集中导致的电阻条断裂问题,提高了芯片结构的耐温性,使其在高温环境下的性能得到了提升,提高了传感器的工作稳定性。4结论本文通过分析压敏电阻在高温环境下的应力分(a)全温区输出电压(b)输出电压局部放大图图 14不同温度环境试验后芯片的输出电压图 15不同温度环境试验后的电阻阻值布情况,提出了一种可以降低热应力堆积的电阻结构,即在电阻条弯折处建立倒角。通过对优化前后电阻结构在常压变温环境下进行模拟仿真,得出了新结构的应力比原结构降低了 50%的仿真结果。对结构优化后的压敏芯片进行了

    20、制备和测试,测试结果表第 2 期王婧等:压敏电阻的热应力分析及结构优化49明:原有结构在 300 测试后电阻发生断裂,而优化结构后的传感器在 300 测试以及更高的温度测试中,电阻条完好,电压输出正常,在高温区工作后仍具有正常的电压输出,表明了倒角的设计有助于提高敏感芯片的耐温性,从而提高传感器的热稳定性。参考文献:1 杨荣森SiC 高温压力传感器综合应力仿真及可靠性分析 D 成都:电子科技大学,2020 2 王文涛,梁庭,杨娇燕,等基于 MEMS 技术的颅压监测传感器的设计与制备 J 微纳电子技术,2019,56(10):811816;851 3 张晓莉,陈水金耐高温压力传感器研究现状与发展

    21、 J 传感器与微系统,2011,30(2):14 4 梁庭,薛胜方,雷程,等高频响 MEMS 压力传感器设计与制备 J 仪表技术与传感器,2021(6):610 5 孙克,吕艳,张东旭SOI 压力传感器及其应用 J 仪表技术与传感器,2009(S1):398400;405 6 王凡,刘宝伟,陈宝成,等应力隔离法在蓝宝石压力传感器结构设计中的应用 J 传感器与微系统,2018,37(7):158160 7 李鑫,梁庭,赵丹,等SOI 高温压阻式压力传感器的设计与制备 J 微纳电子技术,2018,55(6):408414 8 姚东媛,谢胜秋,王俊巍,等宽温区工作压力传感器热力学研究 J 传感器与微

    22、系统,2017,36(6):2831 9 TAN M MDevelopment and calibration of high temperaturepressure sensorC/Science and Engineering esearchCenterProceedings of 2016 International Conference on Arti-ficial Intelligence:Techniques and Applications(AITA2016),2016:339342 10 李旺旺,梁庭,张迪雅,等SOI 压阻式压力传感器敏感结构的优化设计 J 仪表技术与传感器,

    23、2016,(6):1518 11TIAN B,LIU H,YANG N,et alNote:High temperaturepressure sensor for petroleum well based on silicon over in-sulatorJ eview of Entific Instruments,2015,86(12):2831 12 ZHANG,LIANG T,LI Y,et alA novel MEMS SiC pres-sure sensor for high-temperature applicationC/IEEEBeijingSection、ChineseIn

    24、stituteofElectronicsProceedings of 2015 12th IEEE International Conference onElectronic Measurement amp;Instruments,2015:16051609 13 姜波,齐杏林,赵志宁,等MEMS 压力传感器现状及其在弹药上的应用 J 传感器与微系统,2013,32(2):47 14 李瑜,刘志远,王晓光,等高频响耐高温 MEMS 压力传感器封装工艺研究 J 传感器与微系统,2021,40(5):6466作者简介:王婧(1997),硕士研究生,主要研究方向为高温压力传感器。E-mail:132

    25、1381752 qqcom通信作者:雷程(1987),高级实验师,博士,主要研究方向为微机电系统(MEMS)技术。E-mail:leichengnuceducn(上接第 43 页)3 唐夕晴,李建闽,佘晓烁S485 总线接口性能测试仪设计与开发 J 电测与仪表,2019,56(7):142147 4 刘喜增基于 S485 的多点传感器采集系统设计 D 湘潭:湘潭大学,2017 5 王佳光模块的研究与测试 D 太原:中北大学,2014 6 千应庆,徐润华,孙偲晟,等光模块 PECL 接口互联技术研究 J 兵工自动化,2009,28(5):14 7 吴昱旻,张金平,张定会电路中的 ESD 保护 J

    26、 仪器仪表学报,2006,27(6):25602561 8 李岚TVS 二极管在电路设计中的应用 J 制造业自动化,2012,34(4):129131;134 9 JAMES S,KOENAAD 保护 S485 通信网络不受有害 EMC 事件影响J 电子产品世界,2014,21(4):3133 10 吴沛冬TVS 瞬态电压抑制二极管及其应用 J 电子世界,2018(15):140141作者简介:荣亚迪(1997),硕士研究生,主要研究方向为FPGA 应用与开发。E-mail:rongyadi qqcom吴胜华(1977),高级工程师,硕士,主要研究方向为集散控制系统。E-mail:shenghua-wu sac-chinacom


    注意事项

    本文(压敏电阻的热应力分析及结构优化_王婧.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png