欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    诱导风机在水电站厂房通风改造中的应用_刘垚.pdf

    • 资源ID:474003       资源大小:1.65MB        全文页数:6页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    开通VIP
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    诱导风机在水电站厂房通风改造中的应用_刘垚.pdf

    1、84第 46 卷 第 02 期2023 年 02 月Vol.46No.02Feb.2023水 电 站 机 电 技 术Mechanical&ElectricalTechniqueofHydropowerStation1 引言水电站发电厂房特别是水轮机层、蜗壳层等大多处于地下,若通风系统运行效果不佳,厂房内夏季容易产生闷热潮湿的感觉,影响设备运行以及运维人员的舒适度1。为能及时排出厂内产生的热湿空气,在老旧电站新增通风系统或对已陈旧老化的通风系统进行重新改造很有必要2。相比于新建电站,旧水电站厂房通风系统改造时,机电设备已安装完成,厂房空间较为局促,若按传统做法新增送排风风管,往往空间受限,难以布

    2、置。诱导通风系统无需增设风管,具有安装灵活、不受空间限制、占用位置少等优点4,可适用于发电厂房内的通风系统改造。无风道诱导通风系统在上世纪 80 年代已开始在日本应用3,我国现阶段主要应用在公路、铁路隧道、地下停车库、船舶及大空间维修检查车间的通风换气中4-7。许淑惠等将地下车库诱导通风设计与传统通风系统设计进行对比分析,得出诱导风机应用更具灵活性及经济性4;王飞以 fluent 软件为平台对地下车库诱导通风系统的应用进行了模拟,结果表明无风管诱导通风系统在地下车库应用中具有良好的通风换气效果5;潘志信 等对车库诱导通风射流及风口的设计与计算方法进行了研究分析,得出相应的设计要点与方法6;田利

    3、伟 等对盖下动车检查车库的诱导通风系统进行了三维模拟研究,提出了诱导通风系统应用于动车检查库的设计方案及关键技术参数7;但对于诱导通风系统在水电站中的应用研究较少。本文对诱导风机在水电站通风改造中的应用做探讨,得出其应用特性,为相关水电站通风及改造工程提供参考。2 诱导通风计算原理由流体力学可知,空气从一定形状和大小的喷口出流可形成层流或紊流射流。由于射流边界与周围介质间的动量交换,射流将不断卷吸周围空气并不断扩大,并以一定的速度向前移动,从而可形成气流组织8,图 1 为自由射流原理图8,9。诱导风机出口喷射出高速气流,带动周围的空气形成满足一定风速要求并具有一定有效射程和覆盖宽度的“气墙”,

    4、气流不断扰动卷吸周围空气向前流动,再经过多台诱导风机的接力,推动室内气流向指定的方向流动。图 1 中,气流从直径为 d0的风口中喷射出,具有初始速度 u0,经历起始段和主体段卷吸周围空气收稿日期:2022-09-22作者简介:刘 垚(1991-),男,工程师,从事水电站暖通空调专业设计研究工作。诱导风机在水电站厂房通风改造中的应用刘 垚,曾金海(中国电建集团贵阳勘测设计研究院有限公司,贵州 贵阳 550081)摘 要:针对诱导风机应用于水电站厂房通风改造,结合诱导通风原理,进行风机应用特性分析,并根据分析结果进行风机的选型示例,提出了诱导风机应用在水电站通风改造中的建议。风机纵向接力间距与下方

    5、净空要求是确保诱导风机气流连续性的关键影响因素。通过计算分析表明,风机纵向接力间距最大不宜超过 10 m,同时风机布置还应考虑下方的净空要求,确保射流不被下方障碍物遮挡。在确定风机布置数量时应综合考虑风量、接力间距、净空要求、经济性等因素。关键词:诱导风机;水电站;通风;射流中图分类号:TV735文献标识码:B文章编号:1672-5387(2023)02-0084-05DOI:10.13599/ki.11-5130.2023.02.02385第 02 期刘 垚,等:诱导风机在水电站厂房通风改造中的应用后,在与出风口距离为 x 处,轴心速度不断衰减为ux,同时射流圆断面不断扩大,直径为 dx。2

    6、.1 射流主体段轴心速度根据自由射流的规律性研究结果,以风口为起点,射流轴心速度 ux的变化关系式为9:uxu0=0.48axd0+0.145 (1)式中,ux以风口为起点,到射流计算断面距离为 x 处的轴心速度,m/s;u0风口出流的平均速度,m/s;x由风口至计算断面的距离,m;a紊流系数;d0风口直径,m;当诱导风机安装在顶棚之下贴近顶棚时,射流的运动规律有所变化,形成贴附射流,贴附射流可视为完整射流的一半,其规律不变,可按出风口断面加倍、出口流速不变的完整射流进行计算,将自由射流公式(1)的送风口直径 d0代以 2 d0,由此可得贴附射流状态下,射流轴心速度 ux的变化关系式为:uxu

    7、0=0.48ax2 d0+0.145 (2)2.2 射流圆断面直径根据图 1 自由射流原理图,结合式(1)式(2),在距出风口距离为 x 处的贴附射流的射流圆断面直径 dx1计算式为8:dx12 d0=6.8ax2 d0+0.145 (3)对于贴附射流,dx12即为离出风口距离为 x 处的射流断面底端距顶棚下的距离。2.3 诱导风量的确定设诱导风机出口处风量为 Q0,距离出口为 x 处的与出口平行断面诱导风量为 Qx,由动量守恒定律可得9:m0u0=mxux (4)m0气流质量,kg/s;由 m=Q 可得Q0u0=Qxux (5)式中:Q0诱导风机出口处风量,m3/s;Qx距离出口为 x 处的

    8、与出口平行断面诱导风量,m3/s;Q0=A0u0 (6)式中:A0出风口断面面积,m2;u0风口出流的平均速度,m/s;联立式(1)、式(4)式(6)可得,距离出风口 x 处的诱导风量为:Qx=axd0+0.1450.48u0d204 (7)由式(7)可知,当出口直径和速度一定,诱导风量与射流距离 x 成正比,当 x 为最大射程时,诱导风量达到最大。上式为无限空间自由射流诱导风量计算式,当为贴附射流时,将送风口直径 d0代以 2 d0可得贴附射流情形下的诱导风量计算式:Qx=ax2 d0+0.1450.48u0(2 d0)24 (8)3 诱导风机应用关键影响因素分析不同于常规通风系统采用管道系

    9、统进行气流的汇集,诱导风机利用射流原理诱导室内气流向指定方向流动,并通过前后风机之间的“接力”使得气流向前推进,如何保证气流的连续性是影响风机应用效果的关键。由式(1)可知,射流轴心速度随着射流距离增大而降低,卷吸能力减弱,若两台风机纵向接力间距较远,风机可能无法接力;另一方面,根据射流圆断面直径计算式(3)结合图 1,诱导气流随着射流距离的增大,气流直径将会不断增大,若在射流向前推进过程中,射流下方受到障碍物的遮挡,将会对射流的向前传播造成阻碍,影响射流推进效果。以上两点,均可能减弱气流向前推进的作用或阻断气流的连续流动,使得诱导风机的作用降低。因此,风机布置的纵向接力间距及风机下方净空情况

    10、,是影响气流连续性的两个关键因素。下面将对这两个关键因素进行分析讨论。3.1 风机纵向接力间距前后风机的纵向接力间距主要与风机的射流距图 1 自由射流原理图86第 46 卷水 电 站 机 电 技 术离相关。根据射流轴心速度变化关系式(1)式(2)可知,射流轴心速度与射流距离成反比,随着射流距离的增大,射流轴心速度减小。轴心速度的计算还与出口速度、紊流系数、风口直径有关,但风机一旦确定,这些参数在射流过程中可视为固定值。根据文献 10 研究及结合实际诱导风机样本可知,诱导风机出口风速取 1012 m/s 较为合适,在此取出口速度为 12 m/s,风口直径根据相关样本参数取为 0.08 m,紊流系

    11、数主要与风口形式有关,一般取0.08,因此由式(2)可计算出轴心速度随着射流距离增加的变化关系,计算结果如图 2 所示。图 2 射流轴心速度随射流距离增加的变化值由图 2 可看出,在距出口 05 m 的射流距离段,射流轴心速度随着射流距离的增加急剧下降,之后射流距离继续增加,轴心速度的下降呈现较为平缓趋势,说明此时射流对周围空气的卷吸推动能力已逐渐减弱。由文献 10-12 研究可知,大于 0.5 m/s的气流速度才能更好带动周围气流向前推进,故可将轴心速度 0.5 m/s 作为确定最大射流距离的临界值。由图 2 可看到,最小轴心速度 ux=0.5 m/s 与速度变化曲线交点在射流距离 13 m

    12、 处,即为风机最大射流距离,考虑一定的余量,可设置最大射流距离为10 m,即为诱导风机纵向接力的最大间距,此时轴心速度为 0.8 m/s。综上所述,诱导风机布置时,在纵向距上一个诱导风机出口 10 m 内的距离设置下一个诱导风机进行接力将能保证气流的不断推进。3.2 风机下方净空要求由第 2 章节射流原理可知,射流由出口射出后,卷吸周围空气成为一个直径不断扩大的气柱。根据射流圆断面直径计算式(3)可得,紊流系数、出口直径均可视为固定值,射流断面直径与射流距离成正比,随着射流距离的增大,断面直径亦不断增大,射流范围不断扩大。射流距离与射流断面直径的变化关系如图 3 所示。图 3 射流断面直径随射

    13、流距离增大的变化图 4 诱导风机贴附射流示意图根据上文 3.1 分析可知,风机射流距离最大值为 10 m,结合图 3,当射流距离为 10 m 时,射流断面直径为 5.6 m。对于贴附射流,风机下方所能覆盖的范围为射流直径的一半,如图 4 所示。故当风机纵向布置距离为 10 m 时,为使得诱导风机的自由射流不受干扰或阻断,应满足顶棚下方距离为 2.8 m 的净空空间内无明显障碍物的遮挡。同理,当风机射流距离减小,射流圆断面最大直径减小,射流覆盖范围减小。即当风机布置纵向接力距离缩短,风机下方所需的净空空间相应减小,下方障碍物高度限制可增大。例如若电气设备高度高于顶棚下 2.8 m 的空间,则诱导

    14、风机布置时,前后风机的布置的最大距离应小于 10 m,同时再根据实际的布置间距校核射流的最大直径,确保风机射流不被下方障碍物遮挡。4 诱导风机应用选型示例分析以某水电站通风改造为例,在水轮机层增设诱导通风系统以排除室内热湿空气,结合上文第 3 节所述应用特点进行诱导风机的选型布置。如图 5 所示,电站水轮机层厂房层高 4.1 m,主要为贴墙水机管路和高度较低的设备,空间较开阔。新风通过下游侧开敞楼梯间等进入水轮机层,在水轮机层内设87第 02 期刘 垚,等:诱导风机在水电站厂房通风改造中的应用置多台诱导风机,将本层气流向上游侧副厂房内进行诱导,在副厂房内设置排风系统,将热湿空气集中排至通风竖井

    15、再排出厂外。图 5 诱导风机在水电站通风改造应用中布置示意图4.1 通风量的计算水轮机层设置通风系统一方面是消除室内余热,保证室内设备的运行环境温度要求,另一方面是消除室内余湿,减少设备管路的结露现象。按消除余热和消除余湿分别计算通风量,二者取大值为最终通风量13,14。(1)消除余热通风量计算可知,本层余热量 Q 为 21 kW,消除余热所需通风量可按下式进行计算13:G=Qc (tp-tj)(9)式中,G消除余热所需通风量,kg/s;c空气比热容,c=1.01 kJ/(kg.);tp水轮机层排风温度,根据规范14规定取值 33;tj水轮机层进风温度,取 28。由 此 可 计 算 出,消 除

    16、 余 热 所 需 排 风 量 为G=4.2 kg/s,即是 12 475 m3/h。(2)消除余湿通风量由计算可得本层余湿量 W 为 1 750 g/h,根据下式进行通风量计算15:G=Wdp-d0 (10)式中,G消除余湿所需通风量,kg/h;空气含湿量可按本地气象参数确定,dp排出空气的含湿量,g/kg,干空气取值 22.4 g/kg;d0进入空气的含湿量,g/kg,干空气取值 15.5 g/kg。由此可计算出,消除余湿所需排风量为253.6 kg/h,即是 211 m3/h。二者取大值,可得水轮机层通风量为 12 475 m3/h。4.2 诱导风机的选型根据计算出的通风量,下面进行诱导风

    17、机的选型布置。(1)单个风机诱导风量的计算由 3.1 节分析可知,诱导风机最大接力间距为10 m。如图 5 所示,根据本厂房条件,水轮机层纵向方向长度为 10 m,在最大接力间距之内,可考虑不需另设风机进行接力;但水轮机层上游副厂房内还有 3 m 的宽度,为保证气流能进入上游副厂房内通过排风管排走,拟再设置一排诱导风机进行接力。根据厂房内设备布置情况,水轮机层电气设备较少,风机下方的净空可满足要求,接力间距可设置为8 m。故设诱导风机紊流系数取 0.08,出口直径 0.08 m,出口流速 12 m/s,射流距离 8 m,根据式(8),计算得出单台诱导风机风量为 4 624 m3/h。(2)风机

    18、台数确定根据计算的通风量为 12 475 m3/h,考虑风机余量,乘以 1.05 的系数,总通风量为 13 098 m3/h。单台诱导风机风量为 4 624 m3/h,当设置 3 台风机,总诱导风量为 13 872 m3/h,可满足通风量的要求。(3)风机布置由上文计算分析结果可得诱导风机的布置方案:如图 5 所示,在水轮机层下游侧设置 3 台诱导风机,通过楼梯间等引入新风,在上游距风机出口 8 m处再分别对齐设置 3 台诱导风机进行接力,将水轮机层空气引入上游副厂房内,再通过上游副厂房内的排风系统排出厂外。5 诱导风机在水电站通风改造中的应用分析上文第 3 章节分析了诱导风机的最大纵向接力间

    19、距和风机下方净空要求,由分析可知,要保证诱导气流的连续性,风机间最大纵向接力间距为 10 m,风机下方净空要求为 2.6 m。在实际的应用中,水电站内各楼层高度一般在 46 m,同时电站内机械设备、电气设备柜较多,大多设备柜高度在 22.5 m之间,不一定能保证设备柜上方 2.6 m 的净空要求,故在实际应用中,应综合考虑层高、设备柜布置情况、风机下方净空要求、经济性等因素,进行风机的布置。(1)对于母线层、中间层等电气设备较多的房间,应尽量在设备间通道或人行通道上方布置诱导(下转第 97 页)97第 02 期罗 操,等:防渗截渗技术在水利工程堤防加固处理中的应用注浆防渗板墙、混凝土防渗墙体分

    20、别为 3 个、1 个。取上来的岩芯为水泥浆与砂卵砾石胶结完整的结石。压水实验要在墙体上钻孔作为静水柱,每孔为3 段,每段长度为 5 m。通过实验,墙体具有较好的连续性,且密实性良好,各项指标符合标准与要求。5 结语防渗截渗技术在水利工程堤防加固处理中的应用,能有效提升堤防的安全性与稳固性,避免发生渗漏现象。水利工程的安全与质量直接影响农业发展以及人民群众的安全,所以必须关注水利工程堤防的渗漏情况,并结合实际情况采取科学合理的加固处理措施。防渗截渗技术的应用具有良好的防渗效果,且对堤坝的质量提升作用较为明显,值得推广与实践。参考文献:1姜力宁,刘江,吴振军,等.浅谈小型水利工程湿陷性黄土土质边坡

    21、防渗体系施工 J.施工技术,2018(4):554-557.2李永迪,张帆,王祺,等.极小空间条件下应用全方位高压喷射注浆进行地基加固的技术试验 J.建筑施工,2018,40(9):1579-1581.3徐元超,赵哲伦,涂传彬.海上升压站基础导管架安装及灌浆质量控制以江苏大丰 300MW 海上风电项目为例 J.人民长江,2020(S2):209-212.4 谢同.水利工程施工中堤坝防渗加固技术的运用研究 J.内蒙古水利,2019(9):48-49.5 温青山.基于 Abaqus 的某堤防工程防渗加固结构水-力耦合场分析研究 J.水利科技与经济,2020(6):16-21.6 陈玉雪.单管高压旋

    22、喷灌浆防渗墙研究以五长后水库除险加固中应用为例 J.黑龙江水利科技,2019(4):167-169.风机,从而可避免诱导风机气流受到下方设备的阻断;若两台风机前后之间有障碍设备遮挡,可缩短风机之间的纵向接力间距,再结合实际设备高度和风机间距校核下方空间是否满足要求。(2)对于水轮机层等房间,若电气设备较少,空间较充足,可按 10 m 最大接力间距进行布置,从而减少诱导风机的选用台数,减少设备投资。(3)如图 3 所示,风机射流断面直径与风机纵向接力间距成正比,风机间距越小,则射流断面直径越小,风机下方净空要求越小。故对于层高较低楼层,可适当缩短诱导风机接力间距,减少最大射流半径,避免层高空间较

    23、低对风机的射流传递产生影响。6 结论(1)诱导风机的纵向接力间距和风机下方净空要求是保证诱导气流连续的两个关键因素,布置风机的数量应综合考虑风量、接力间距、净空状况及经济性等的影响。(2)随着射流距离增大,诱导风机轴心速度减小,卷吸能力减弱。为保证气流连续性,风机布置的最大纵向接力间距以 10 m 为宜。(3)风机的射流断面直径随射流距离增大而增大,直径越大,风机下方净空要求越大。空间净空较低时,为保证射流不被阻碍,可适当减小风机接力间距来降低净空要求。参考文献:1林婷莹.地下式水电站通风空调系统设计方案优化研究D.重庆:重庆大学,2014.2陈日伟,李超顺,侯福年,等.水电站地下厂房通风系统

    24、智能化改造方案研究 J.中国农村水利水电,2021(6):187-190,196.3李茜.地下车库无风管诱导通风系统数值模拟研究 D.成都:西南交通大学,2005.4许淑惠,罗文斌.地下停车场无风道诱导通风系统性能及经济性分析 J.北京建筑工程学院学报,2004(2):38-41.5王飞.地下车库无风管诱导通风系统的应用及数值模拟分析 D.西安:长安大学,2015.6潘志信,王雪锦,刘东,等.地下车库诱导通风射流及风口的计算 J.暖通空调,2007(7):79-82.7田利伟,于靖华,郭辉,等.盖下动车检查库诱导通风系统设计参数研究 J.暖通空调,2021,51(9):6-10.8蔡增基,龙天

    25、渝.流体力学泵与风机 M.北京:中国建筑工业出版社,1999.9赵荣义,范存养,薛殿华,等.空气调节 M.4 版.北京:中国建筑工业出版社,2008.10鲁文,周传辉.诱导风机喷嘴风速对地下车库速度场和浓度场的影响 C/全国暖通空调制冷 2010 年学术年会论文集,2010:89.11鲁文.地下车库诱导通风系统的数值模拟 D.武汉:武汉科技大学,2010.12卓凯.诱导风机风面连续性的控制 J.建筑技艺,2018(S1):359-365.13GB50736-2012 民用建筑供暖通风与空气调节设计规范 S.14NB/T35040-2014 水力发电厂供暖通风与空气调节设计规范 S.(上接第 8

    26、7 页)147Mechanical&Electrical Technique of Hydropower Station(Vol.46 No.02)ABSTRACTSAcceptance test of pump-turbine model of Henan Wuyue Pumped Storage Power StationXIONG Cong-feng,PAN Jun-wei,LEI Jia-wang,HU Wang-xing(Henan Xinhua Wuyue Pumped Storage Power Generation Co.,Ltd.,Xinyang,213334,China)A

    27、bstract:The acceptance test of the pump-turbine model of Henan Wuyue Pumped Storage Power Station was carried out on the DF-150 universal hydraulic machinery test bench in December 2021.The model pump-turbine and model test bench are briefly introduced,and the main test results are analyzed in this

    28、paper.The test results proved that the main hydraulic performances of indices including energy,cavitation,runaway speed,pressure pulsation and full characteristics of this model could meet the contract requirements.Keywords:acceptance test;pump turbine model;Henan Wuyue;pumped storage power stationD

    29、iscussion and application of microwave equipment in upgrading and reconstruction of communication system in hydropower stationsZHANG Shuai,LIANG Ming-hua(China Water Conservancy and Hydropower Construction Bureau Co.,Ltd.,Zhengzhou,450001,China)Abstract:In order to improve the communication between

    30、powerhouse and dam of hydropower station,the microwave communication equipment will be used in the reconstruction through the upgrading and reconstruction of communication system of the Upper Bodhisi Hydropower Station in Nepal.The selection of a reasonable location,the consideration of operation sa

    31、fety,the stability of data transmission,the improvement of power generation efficiency,and the optimization of the reconstruction effect will be achieved through the reasonable detailed design and the fine installation process.Keywords:microwave;wireless communication;hydropower station;passive rela

    32、y stationDesign and research on storage method of multi-source heterogeneous data of giant hydropower stationSHUI Hai-xia,AI Yuan-gao(China Yangtze Power Co.,Ltd.,Yichang,443000,China)Abstract:There are a lot of equipment in giant hydropower stations,and an enormous number of online monitoring equip

    33、ment are used to monitor the operation of units effectively,thus a lot of online monitoring systems with different functions are formed.Each condition monitoring system is decentralized and relatively independent.Due to the different deployment modes among subsystems,the data format is not uniform,a

    34、nd the data is not communicated with each other,so the storage,analysis and sharing of data cannot be unified.To solve this problem,this paper proposes a storage design method for multi-source heterogeneous data of giant hydropower stations,which can solve the current problems through multi-protocol

    35、 conversion algorithm,database classification storage strategy,massive data storage and other technologies.Keywords:giant hydropower station;multi-source heterogeneous;data storageApplication of induced fan in ventilation reconstruction of hydropower plantLIU Yao,ZENG Jin-hai(PowerChina Guiyang Engi

    36、neering Co.,Ltd.,Guiyang,550081,China)Abstract:In view of the application of induced fans in ventilation transformation of hydropower plant buildings,combined with the principle of induced ventilation,the application characteristics of fans are analyzed,and based on the analysis results,an example o

    37、f fan selection is given,and suggestions for the application of induced fans in ventilation transformation of hydropower plants are put forward.The longitudinal relay spacing and lower clearance requirements of the fan are the key factors to ensure the continuity of induced fan airflow.The calculati

    38、on and analysis show that maximum longitudinal relay distance of the fan should not exceed 10m,and the clearance requirement below should also be considered in the fan layout to ensure that jet is not blocked by obstacles below.When determining the number of fans,the air volume,relay spacing,clearance requirements,economy and other factors should be considered comprehensively.Keywords:induced fan;hydropower station;improve air circulation;jet


    注意事项

    本文(诱导风机在水电站厂房通风改造中的应用_刘垚.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png