欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    硬质路面条件下履带车辆转向模型分析及验证_张瑞增.pdf

    • 资源ID:472635       资源大小:2.37MB        全文页数:14页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    VIP下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    硬质路面条件下履带车辆转向模型分析及验证_张瑞增.pdf

    1、第 卷第 期 年 月兵工学报 :硬质路面条件下履带车辆转向模型分析及验证张瑞增,龚建伟,陈慧岩,刘海鸥,卢佳兴(北京理工大学 机械与车辆学院,北京)摘要:履带车辆与地面之间的作用关系复杂,基于地面剪切位移的方法通常会用到对时间和位置的积分,模型较为复杂,无法直接应用到车辆的实时控制算法中。通常情况下,履带车辆转向分析会将接地压力看作连续线性分布或者多矩形分布,但是试验和计算结果均表明硬质土壤条件下,履带接地压力为多峰值分布,前述两种分布均不能体现接地压力的真实状态。本文针对上述问题,在前人研究的基础上,对履带接地压力分布进行求解,提出了履带车辆接地压力简化模型。该简化模型更符合硬质路面履带接地

    2、压力的真实状态,并被应用于履带车辆转向动力学分析与验证。利用 提出的垂向负载剪切位移变化关系解决了垂向压力变化的同时剪切位移计算的问题,提出了履带车辆转向分析模型(以下简称分析模型),试验结果表明该模型有较高的精度。但是其复杂度仍然较高,为了进一步简化模型,借鉴轮式车辆轮胎侧偏角和滑转率的概念,利用履带车辆履带地面剪切位移关系推导了简化履带车辆动力学模型(以下简称简化模型)。该模型避免了复杂的积分或者求和,显著降低了履带车辆动力学模型的复杂度,能够应用于基于模型的无人驾驶履带车辆轨迹控制方法中,且模型精度接近前述履带车辆转向分析模型。关键词:履带装甲车辆;转向特性;非均布载荷;模型验证 中图分

    3、类号:.文献标志码:文章编号:()收稿日期:,(,):,兵 工 学 报第 卷 ,:;引言相比于其他类型车辆,履带车辆最为显著的特点是其负重轮不直接与地面接触,而是通过履带与地面接触。履带的引入能够平滑路面粗糙,分散负重轮压力,有助于提高附着力,因此履带车辆的平均地面压力小,牵引力大,能够在泥泞、软质沙地、陡峭坡地以及碎石滩等极端野外环境下行驶,相比于轮式车辆具有适应范围广、通过性强的优点,广泛应用于军事、救援、工程机械和农业领域。履带在提升车辆适用性的同时也带来车辆动力学建模与控制难题。履带接地形状为窄长的带状,履带的受力分析必然会用到积分或者求和,这意味着履带车辆动力学模型复杂度较高;履带分

    4、散了负重轮压力,在一般路面条件下,实际接地压力既非集中载荷也非均布载荷,而是一种呈现多峰的分布形式,即在履带地面剪切位移积累的过程中垂向负载持续变化,这意味着剪切位移的积累并不是简单的速度对时间的积分,还需要考虑垂向载荷的变化。现有的履带车辆转向动力学模型按照履带地面接触模型分类主要有三种。第一种是经验模型,以俄罗斯 学者尼基金提出的经验公式 ()()(为最大转向阻力系数,为与土壤特性有关的系数,为转向半径,为履带中心距)为代表。该经验公式简洁,且在工程上应用广泛。但是,该公式为纯粹的拟合公式,参数 本身没有明确的物理意义。将其应用于履带车辆动力学控制的问题是其不能描述滑转滑移和转向过程的转向

    5、中心的偏移量,也无法描述履带车辆侧向动力学。第二种是基于摩擦理论的模型,实际上能够符合这种理论的地面非常少,文献也证明了这种模型的不可行性,此处不再赘述。最后一种是基于剪切应力剪切位移理论的模型,以美国学者 等和 的研究最具代表性,其研究以微元为基础,将微元特性积分即得到车辆整体地面特性。由于积分的引入导致其模型复杂度很高,无法应用于履带车辆实时控制中,多作为分析模型分析车辆性能。加拿大学者 等在 研究的基础上对地面力学理论进行了完善和发展。国内王红岩等、魏宸官和余群等都曾对履带或农用轮式车辆的地面作用关系进行过相关的研究,他们是国内相关研究的先驱。文献,对硬质路面高速履带车辆的转向过程进行了

    6、分析,将履带接地压力看作连续线性分布,并将履带转向极横向偏移量引入转向模型,取得了较好的验证效果。文献将履带接地压力看作矩形分布,且分布于负重轮下方。文献对履带车辆转向性能参数的测试及获取方法进行了研究。文献 用卡尔曼滤波等方法对履带车辆转向过程的滑动参数进行预测,文献采用 模型对道路阻力系数与转向阻力系数进行估计。文献探究了履带张力作用对稳态转向性能的影响。有些学者也对深海和农用履带式车辆进了相关的研究。国外近年也针对履带车辆转向过程进行了一些研究,文献采用对地面剪切力积分的方法对硬质路面的稳态转向进行了研究。文献认为履带接地压力集中于负重轮下的单块履带板上,并且用离散微元求和的方法对非稳态

    7、转向进行了分析,而文献则提出了将履带看作特殊布置的轮子进行多体模型分析的方法。上述研究大都更加关注履带与地面之间的剪切关系,将履带接地压力看作连续线性载荷或者集中载荷。实际上,履带车辆在常见土壤条件下,接地压力均呈现多峰分布形态。本文主要有以下贡献:)在前人研究的基础上,考虑履带接地压力的实际情况,进一步完善了基于剪切应力剪切位移理论的履带车辆动力学分析模型;)在上述模型的基础上,借鉴了轮式车辆轮胎侧偏角的概念,在保证模型精度的基础上大幅度简化模型,使其在复杂度上可以应用于无人驾驶履带车辆轨迹控制方法;)通过实车试验对上述模型进行了验证。履带车辆接地压力分布分析.系统描述与模型简化履带接地压力

    8、的分布体现了履带与地面在垂直方向的交互关系,垂向压力分布的大小与形态会直接影响履带在水平方向的受力情况,水平方向的受力情况则会直接影响到履带车辆的驱 制动和转向性能。因此,为了对履带车辆转向过程进行分析,必须首先对履带接地压力分布进行分析。履带车辆负重轮的载荷施加在履带上后变为履 第 期硬质路面条件下履带车辆转向模型分析及验证带与地面间的分布载荷,且地面越松软、履带张紧力越大,履带和地面间的载荷分布越均匀。为了研究方便通常假设履带接地压力为连续线性分布或者呈矩形分布,但是这两种假设形式都不能很好的对履带接地压力进行拟合。等将车轮和履带间的作用力看作集中载荷,忽略了车轮的形状,对负重轮之间的接地

    9、压力分布进行了分析,分析认为负重轮间的履带方程为悬链线。等在 研究的基础上,考虑车轮形状,接地过程中履带张力的变化,形成了包括车辆质量、履带形状、负重轮形状与数目、悬挂与履带张紧装置刚度、预紧力等在内的 个车辆设计参数和包括地面刚度系数在内的 个地面参数的履带车辆接地压力方程。本节对上述研究成果进行归纳总结,在保证模型精度的基础上,将上述模型简化为求解三个未知参数的方程。为了简化系统,明确研究对象,做出以下假设:)履带车辆在硬质可形变的平坦路面上行驶,各负重轮负重相同;)将履带看作不可伸长的柔性带,且忽略土壤剪切力对履带形态分布的影响;)忽略由于履带接地段变形导致的履带张紧力的变化;)土壤压力

    10、沉降关系符合 等提出的土壤压力沉降公式 (为接地压强,为地面沉陷量,和 为接地压力系数),且 。图 履带土壤接触变形简图 履带局部与地面接触后的变形如图 所示。图 中:坐标系 以水平面上两负重轮中间位置为原点,为轮心到原点 的纵向距离,为履带最大下沉量,为负重轮半径,为负重轮角速度,点(,)为履带接地段的最高点,点(,)和点(,)分别为履带环绕负重轮的部分与负重轮之间部分和履带倾斜段的交点;履带与地面的接触有三种形式,第一种形式为两个负重轮之间的部分,如图 中曲线 段 所示;第二、三种形式为履带环绕负重轮的部分,以负重轮的最低点为界,与点 相连的为,与点 相连的为;为履带与水平面的夹角,与 分

    11、别为履带 和 对应的轮心角,为履带前段与地面夹角;为履带张紧力,和 分别为履带张紧力在水平和垂直方向的分力,为常量。对于履带段 有:()()()由 等土壤压力沉降关系公式 可以得到:()令()有 ()由于 ,对式()积分可得 ()()()由于 ,对式()积分可得地面沉陷量关于 的函数(),且履带 段为悬链线曲线,()()()履带 段受到的地面支持力为 ()对于履带段,地面沉陷量关于角 的函数为(),()()由于履带段 与履带段 连接处斜率相同,且履带不可延伸,有 ()()()()对于履带段 有()()()()根据车辆垂向受力平衡,可得()()兵 工 学 报第 卷()()式中:为车体质量;为履带

    12、宽度;为单侧负重轮数量。由式()式()和 土壤压力沉降关系公式即可求得理想状态下履带接地压力分布形式。但是上述求解过程复杂,接地压力分布为多段式,不利于履带车辆转向过程的分析。为简化后续转向动力学模型求解过程,本文结合履带车辆接地压力分布形态,提出了可以调整压力峰在履带方向上作用范围的履带接地压力假设对前述复杂模型进行拟合,如式()所示,()(),(,)()式中:为第 个负重轮的垂向压力;为 作用长度;为第 个负重轮中心的横坐标。采用余弦函数拟合履带接地压力的原因主要有二,一是其形态与实际履带接地压力分布形态接近,二是其积分简单且积分结果为常数。图 余弦曲线拟合内侧负重轮接地压力效果 图 和图

    13、 分别为不同类型、不同履带张紧力的车辆在硬质路面接地压力分布形态以及采用式()的拟合结果对比,计算轮距为.,图中实线部分为计算曲线,虚线部分为拟合曲线。图 为对中间负重轮接地压力拟合的效果,图 为对外侧负重轮接地压力拟合的效果。在中等履带预紧力(车重)情况下,从中等硬度路面(土壤刚度 )到硬质路面(土壤刚度 ),余弦曲线对中间负重轮(图 中负重轮 至()下的履带接地压力都有着很好的拟合效果,对两侧负重轮下的履带接地压力在形态上的拟合效果稍差,但是整体上还是有较好的拟合效果,处于可以接受的程度。图 余弦曲线拟合两侧负重轮接地压力效果 .履带接地载荷计算为了降低模型复杂程度,首先假设履带接地压力为

    14、集中载荷,作用点为负重轮正下方,而后根据集中载荷的大小对履带接地压力载荷分布进行估计。图 为集中载荷作用下的履带接地压力。图 中 为车辆重心,为负重轮编号,和 特指第 个和最后一个负重轮,直线 为第一负重轮前任意一条与车体垂直的直线,和 分别为车辆重心和第 负重轮到直线 的距离,与 分别为车辆重心到车辆几何中心的侧向和纵向距离,为车辆重心高度,与 分别为履带前后倾角,、和 分别为重力作用在车辆垂向、纵向和侧向的分力,与 分别为车辆在侧向和纵向的加速度,为地面给 第 期硬质路面条件下履带车辆转向模型分析及验证第 个负重轮的支持力,下标 和下标 分别代表内外侧履带。图 集中载荷作用下的履带接地压力

    15、 当内侧履带驱动时,|()当内侧履带制动时,|()式中:和 分别为内外侧履带的拉力;,、,和,分别为履带拉力作用于内侧第一负重轮和内外侧最后一个负重轮的垂向拉力,其与地面支持力共同作用于车辆悬架。假设相同悬架位移产生的力相同,且呈线性变化,有,其中,为内侧或者外侧第 个负重轮承受的支持力,为斜率。通过式()方程组可以求解出三个未知数、和。(,)(,),(,),()(,),()()(,),(,),()|()式中:为履带中心距。集中载荷的履带地面支持力 在内侧履带驱动时和制动时分别为,|(),|()引入图 所示的 坐标系,为第 个负重轮中心的纵坐标,考虑前述接地压力的分布形式,则第 个负重轮下的履

    16、带接地压力为(),(,),其他()履带车辆转向过程分析.系统描述为了明确履带车辆转向过程,做出以下假设:)履带车辆在硬质路面上以固定半径转向,忽略履带沉陷以及推土效应;)履带与地面的剪切力与该点的剪切位移有关,且履带与地面接触点的切应力与该点的滑动速度的方向相反;)忽略剪切位移计算过程中纵向车速的变化;)转向过程中履带车辆的行驶阻力与直驶时相同;)不考虑车辆悬架以及履带张紧力对转向过程的影响,履带接地压力为多峰的分布形式,峰值位于各负重轮正下方。建立图 所示坐标系。图 中,大地坐标系为,坐标系 与坐标系 为车体坐标系,和 分别为内外两侧履带的瞬时转向中心,实线部分为车辆当前位置,虚线部分为之前

    17、某时刻车辆的位置,为车辆转向半径,为车辆重心位置在大地坐标系 轴方向的投影,为车辆重心到转向中心(轴)的距离,为某时刻车体坐标系 轴与大地坐标系 轴的夹角,为车辆履带接地长,为履带上某点 的剪切速度 与 轴的夹角,为该点受到的剪切力,为履带牵连速度,为坐标原点的速度。.地面剪切位移通常为了简化模型复杂度将履带接地压力分兵 工 学 报第 卷图 车辆转向过程分析 布看作均匀分布或者长方形分布,这种简化不需要考虑由接地压力变化带来的地面剪切力变化。由前述分析可知,将履带车辆接地压力负载分布看作余弦函数更符合实际情况,但是在这种条件下,由于垂向压力连续变化带来的地面剪切力变化不可被忽视。土壤剪切力公式

    18、为 ()(),当忽略土壤内聚力和粘附力而只考虑摩擦时,可以写为 ()。其中:为黏聚系数;为剪切应力;为土壤摩擦角;为土壤剪切位移;为土壤抗剪模量;为履带与地面间的摩擦因数。等和 等认为履带车辆垂向负载的变化会影响到名义剪切位移的大小,并且有以下关系:)当接地压力增加时,名义剪切位移变为压力增加后剪切曲线上相同剪切力对应的剪切位移。如图 所示,当剪切压力在 时刻增加到 时,名义剪切位移由 变为;)当接地压力减小时,剪切力等比例减小,名义剪切位移不变。即 (()),(),()式中:为 时刻。履带车辆受力情况与履带和地面间的剪切位移直接相关,剪切位移是剪切速度的积分,因此首先需要对剪切速度进行分析。

    19、如式()式()所示,()图 垂向负载剪切位移变化关系 ()()()()第 期硬质路面条件下履带车辆转向模型分析及验证()()式中:履带相对于地面的剪切速度在车体坐标系和大地坐标系的分量分别为 和 ;为主动轮半径;表示内侧或者外侧主动轮转速,()号外侧取()号,内侧取()号。由于忽略了剪切位移计算过程中车速的变化,即认为车辆横摆角速度保持不变,对于 有()()为便于读者理解,这里再次对 进行解释,为了计算在图 实线位置履带坐标系上位置 处某点与地面的剪切位移,需要对该位置从进入负重轮下压力区间开始,到车辆达到实线位置整个时间区间内与地面的相对速度 进行求和 积分。因此,为实线位置履带坐标系上位置

    20、 处履带开始进入负重轮下压力区间的时刻(对应图 中虚线位置)车体坐标系 轴与大地坐标系 轴的夹角。本文相比之前的研究,最大不同是将履带接地压力分布看作多峰值的形式。履带剪切位移的计算从履带开始承受垂向载荷到垂向载荷消失为止。将履带接地压力看作均匀分布带来的问题是显而易见的,即履带越靠后位置的点剪切位移越大,受力越大,导致转向中心比实际情况后移。实际上在这个过程中垂向载荷已经加载、卸载多次。如图 所示,将单个负重轮下接地压力不为 的履带接地长度分成 个微元,假设履带车辆做稳态转向运动,履带通过转过单一微元长度的时间为,有 ()图 履带微元划分 对于 个微元中任意一个微元,从进入接地压力区域起,运

    21、行到当前位置需要经过的时间为,运行到中间任意位置需要的时间为,。例如,表示当前履带第 个微元在进入接地压力区域 时刻的横向滑移速度。因此,式()、式()式()可以改写为在离散条件下,微元 在进入接地区域后 时刻的状态 ()()()()()()()()()()()()()()式中:、分别为微元 在进入接地区域 时刻时的接地压力,坐标系夹角,横、纵向剪切速度和横、纵向剪切位移。将式()、式()改为递推的形式,计算履带微元名义剪切位移,(()),|()(()),|()()式中:为履带微元 在 时刻的前一时刻的履带剪切位移;、分别为微元 在进入接地区域 时刻时的横、纵向剪切位移。.剪切状态下的履带作用

    22、力与运动方程由于结构的设计,履带或轮胎横向与纵向有一定的差异性,为了补偿这种差异性,在横向力的计算中引入系数,因此有兵 工 学 报第 卷 ()()()()式中:为履带上某点的滑动速度与 轴的夹角;、分别为第 个负重轮的第 个微元的横向剪切力、纵向剪切力,剪切应力、接地压强和剪切位移 代表第 个负重轮;为微元面积。对式()、式()求和,即可得到履带受到的地面剪切力的合力,()(),()()两侧转向驱动力矩,和阻力矩,分别为,()()(),()()()()()()()()()式中:为第 个负重轮的第 个微元在车辆坐标系下的坐标。分别在车体坐标系的 轴和 轴方向建立力平衡关系,以及对车辆重心建立力矩

    23、平衡关系,可以得到履带车辆固定半径转向方程:,(,),()式中:为车体质量;为重力加速度;为转动惯量;和 分别为横向和纵向坡度;,和,分别为左右两侧履带滚动阻力。.履带车辆动力学简化模型第.节.节对履带车辆转向过程进行了详细分析,但是其模型为应用了递推与求和的超越方程,难以直接应用于履带车辆的控制。为了提出控制算法适用的履带车辆动力学模型,需要对前述模型进行简化。对于硬质土路面,虽然履带使得接地压力趋于分散,但是压力仍主要集中分布在负重轮下方有限的范围内,与轮式车有很大的相似之处。如图 所示,虚线部分为负重轮的俯视图,实线部分为假设的履带接地压力范围,接地压力范围内各点的平均速度为,其在 轴和

    24、 轴的分量分别为 和。履带地面平均剪切速度为()()()图 单个负重轮下履带接地状态分析 履带地面平均剪切位移为()()()借鉴轮式车辆动力学模型中轮胎侧偏角的概念,令履带车辆每个负重轮下履带的侧偏角(与轮式车轮胎侧偏角概念略有差别)和滑移率 为 ()()因此剪切位移 可表示为 ()()()()根据土壤剪切力公式可以得到单个负重轮下的履带地面作用力为()()()()()式中:参数 为与负重轮、履带和地面等参数相关的系数;为履带地面剪切作用力;为履 第 期硬质路面条件下履带车辆转向模型分析及验证带地面垂向作用力。设 为系数,作用力在 轴和 轴方向的分量分别为 ()()()()由此可以得到硬质路面

    25、上履带车辆整车模型。硬质路面上履带接地压力主要集中在负重轮下方,为了简化模型,可以将履带车辆看作具有与负重轮数目相同轮子的差速转向的轮式车辆,且简化模型的单侧轮子具有相同的转速和滑移率。假设重心在车辆形心,可得 (,)()(,)(,)(),()式中:,为内侧 外侧第 个负重轮轮心到车辆重心的纵向距离。轮式车轨迹控制中常常忽略纵向动力学,以降低模型复杂度,保证算法的实时性。同样方法也可以用在履带车辆中,当忽略纵向动力学并将该模型简化为单轨模型时,以转向驱动力矩为控制量,该模型将得到大幅度简化。结果分析与验证如图 所示,为了验证本文提出的履带车辆转向模型的准确性,利用无人驾驶混合动力双侧电驱动履带

    26、车在不同类型的路面上进行实车验证。试验车辆采用双侧独立电机驱动,实时反馈车辆两侧主动轮转速与转矩;装备有 定位系统和高精度惯性导航系统,实时采集车辆轨迹与位姿信息。试验数据分多次采集自 年至 年,期间车辆设备安装位置略有变动,且由于试验条件限制,每种场地仅采用一种履带形式。相关车辆和道路参数如表 所示,路面行驶阻力系数由车辆在平坦路面上以不同车速往返匀速行驶取测试得到。试验路面主要有沙石路面(见图()、硬质土路面(见图()和水泥路面(见图()三种路面条件,在沙石路面条件下分类采集车辆在 、和 下的稳态转向数据,而 图 试验采集 表 试验相关参数 参数数值总质量 .履带中心距 .履带接地长 .履

    27、带接地宽度 .主动轮半径 .负重轮数量 单侧驱动电机额定功率 单侧驱动电机峰值功率 转矩误差反馈()组合导航系统差分定位误差 一挡传动效率 轴转动惯量(估计)()一挡质量增加系数.沙石 硬土 水泥路面摩擦因数.沙石 硬土 水泥路面抗剪模量 .沙石 硬土 水泥路面行驶阻力系数.在硬质土路面和水泥路面采集的数据则主要在.和 范围内。试验中车辆在沙石路面和硬质土路面上行驶时使用挂胶履带,在水泥路面上行驶时使用了钢制履带。土壤刚度越大,负重轮半径越小,土壤接地压力分布越集中。不同的压力分布类型会影响到车辆地面模型的验证,以及车辆的动力特性。为了对履带车辆接地压力进行定性测量,将压力传感器埋在地表下约

    28、处,车辆匀速驶过,实时采集压力传感器反馈数值,并根据反馈车速计算压力峰之间的距离,图()所示沙石路面试验采集结果如图 所示,其兵 工 学 报第 卷中 为主动轮转速。从图 中可以看出,履带接地压力以多峰的分布形式集中分布在负重轮下方。图 履带接地压力定性测试结果 图 砂石路面 计算结果与试验采集结果对比 图 图 分别为不同路面、不同车速条件下的模型动力学和运动学关键参数计算结果和验证结果的对比。试验数据中的转向半径由车辆轨迹 数据拟合而来,滑转滑移率由两侧主动轮转速估计而来。由图 图 可以看出,随着车速的增加,相同半径情况下内侧转向阻力矩会减小,这主要是由离心力带来的两侧履带载荷转移导致的,在试

    29、验数据中也得到了很好的验证。但是,外侧主动轮施加的驱动力矩并没有显著增加,这是因为随着图 砂石路面 计算结果与试验采集结果对比 车速的增加相同转向半径的转向阻力矩减小了,这主要是由转向中心的前移导致的。对于滑转滑移率,在较大转向半径时滑转率大于滑移率,而随着转向半径的减小,滑移率超过滑转率,这主要是由于内侧轮速减小、除数减小导致的。不同车速下滑转滑移率的变化并不明显,但是试验数据也有较好的拟合效果。通过图 图 与图 图 的对比可以看出,不同路面的转矩曲线在趋势形态上有较大的区别,区别主要体现在曲率的变化上,但是滑转滑移率曲线形态的变化较小。通过图 图 可以看出,在不同车速、不同路面条件下该模型

    30、都有较好的验证效果。简化模型验证结果如图 图 所示。需要注意的是,在车辆转向过程中,车辆几何中心侧向速度(与转向中心偏移量 呈比例)相对纵向速度是个小值,且安装于簧上部分的惯性导航系统无法在震动颠簸条件下精确测量到簧下部分的侧向速度。为了能够验证履带车辆动力学简化模型的准确性,采用.节.节已验证过的分析 第 期硬质路面条件下履带车辆转向模型分析及验证图 砂石路面 计算结果与试验采集结果对比 模型输出的转向中心偏移量和滑转滑移率作为简化模型的输入,并与实际采集数据结果进行对比。由图 图 可以看出,简化模型具有与分析模型相近的精度。侧向力估计在小半径时预测精度略有下降,与土壤为非完全摩擦性土壤有关

    31、,即描述摩擦性土壤的地面剪切应力剪切位移公式 ()无法描述非完全摩擦性土壤在剪切位移达到一定程度后,剪切应力下降的现象。但是对于车辆轨迹控制而言,适当的建模误差是可以接受的。另外一个需要特别注意的是在 时,侧向力估计曲线出现了波动,经检查数据后发现在极低车速时侧向速度 很小,在模型求解过程中,由于求解精度问题导致求解出的侧向速度出现波动导致的。图 为沙土路面下考虑纵向加速度的模型验证,图()为车辆轨迹拟合的效果,从中可以看出在相同转向程度(两侧履带转速比值)下,车速增加对车辆转向半径的影响不大。图()中曲线均为实际采集数据,从中可以看出估计结果与真实值之图 硬质土路.计算结果与试验采集结果对比

    32、 .间的误差较小。总之,本节试验测试结果与计算结果的对比表明,文中建立的转向模型是准确可信的。结论本文的主要研究目标有二。一为提出一个更符合实际情况的履带车辆转向分析模型,二为在尽可能保证精度的基础上简化模型,使得剪切应力剪切位移关系理论能够应用于履带车辆控制。得出以下主要结论:)本文对硬质路面下的履带接地压力的形式与大小进行了分析,根据分析结果将履带接地压力分布模型简化为余弦形式。这是本文相比之前的研究的最大不同,也是能够将复杂分析模型简化的基础。)基于履带与地面之间的剪切力剪切位移关系理论,以及 等提出的垂向载荷变化过程中剪切位移变化的公式,提出了硬质路面条件下的履带车辆转向分析模型,相比

    33、于前人研究更符合路兵 工 学 报第 卷图 水泥路面 计算结果与试验采集结果对比 面真实情况。)本文提出了一种全新的履带车辆动力学简化模型,该模型引入了轮式车中轮胎侧偏角和滑转率的概念,使得模型得到大规模简化。解决了传统分析模型复杂度过高,无法应用于履带车辆实际控制问题。)通过无人履带平台对上述模型进行了验证,试验结果与计算结果的一致性表明本文建立的模型是准确可信的。)本文为无人驾驶履带车辆轨迹跟踪控制建模提供了一个全新的思路,即在硬质路面上,垂向压力主要集中在负重轮下有限的区域内,可以采用平均值替代的方法避免积分,实现模型的大规模简化。参考文献(),():,图 简化转向动力学模型砂石路面 计算

    34、结果与试验采集结果对比 :,诺维科夫 坦克理论 北京:国防工业出版社,:,(),():,:,()王红岩,王钦龙,芮强,等 高速履带车辆转向过程分析与试验验证 机械工程学报,():,():()魏宸官 履带车辆转向问题的研究 拖拉机,():第 期硬质路面条件下履带车辆转向模型分析及验证图 简化转向动力学模型砂石路面 计算结果与试验采集结果对比 ,():()余群 地面机器系统的研究现状及展望 农业机械学报,():,():,()芮强,王红岩,王钦龙,等 基于剪应力模型的履带车辆转向力矩分析与试验 兵工学报,():,():()王红岩,陈冰,芮强,等 集中载荷作用下的履带车辆稳态转向分析与试验 兵工学报,

    35、():,():()图 简化转向动力学模型砂石路面 计算结果与试验采集结果对比 芮强,王红岩,王钦龙,等 履带车辆转向性能参数分析与试验研究 机械工程学报,():,():(),:,熊光明,鲁浩,郭孔辉,等 基于滑动参数实时估计的履带车辆运行轨迹预测方法研究 兵工学报,():,():(兵 工 学 报第 卷图 砂石路面下存在纵向加速度时模型验证效果 )梁文利,陈慧岩,王博洋 基于独立电驱动履带车辆的地面参量估计方法研究 兵工学报,():,():()陈冰,王红岩,芮强,等 考虑履带张力作用的稳态转向性能 装甲兵工程学院学报,():,():()张滔,戴瑜,刘少军,等 深海履带式集矿机多体动力学建模与行走性能仿真分析 机械工程学报,():,():(),:,():,:,():,():,:,:作者简介:张瑞增(),男,博士研究生。:龚建伟(),男,教授,博士生导师。:陈慧岩(),通信作者,男,教授,博士生导师。:刘海鸥(),女,教授,博士生导师。:卢佳兴(),男,博士研究生。:


    注意事项

    本文(硬质路面条件下履带车辆转向模型分析及验证_张瑞增.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png