欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    新型显示偏光片光学膜的加工-结构-性能关系_韩雪晴.pdf

    • 资源ID:465044       资源大小:1.79MB        全文页数:12页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    开通VIP
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    新型显示偏光片光学膜的加工-结构-性能关系_韩雪晴.pdf

    1、新型显示偏光片光学膜的加工-结构-性能关系韩雪晴1,张文文1,安敏芳1,陈威1,崔昆朋2*,李良彬1*1.中国科学技术大学国家同步辐射实验室,合肥 2300292.中国科学技术大学高分子材料科学与工程系,合肥 230029*通讯作者,E-mail:;收稿日期:2022-12-31;接受日期:2023-02-10;网络版发表日期:2023-03-31国家重点基础研究发展规划(编号:2020YFA0405800)和国家自然科学基金(编号:51890872)资助项目摘要偏光片是薄膜晶体管液晶显示器(TFT-LCD)和有机发光二极管显示(OLED)中最重要的组成部分之一,是一种是由偏光膜、支撑膜、相位

    2、差膜等光学膜组合成的多层高分子复合膜.每个组成膜所用材料不同,在偏光片中也发挥不同的作用.随着新型显示的发展,偏振片的产业规模和需求呈井喷之势.然而,目前国内偏光片主要依赖进口,其原因是对偏光片中的各层高分子薄膜加工机制并不明晰,基础研究较为薄弱.本文介绍了本课题组在聚乙烯醇(PVA)偏光膜、三醋酸纤维素(CTA)相位差膜、聚对苯二甲酸乙二醇酯(PET)支撑膜的相关研究进展.通过高时间分辨同步辐射X射线散射与多种原位拉伸装置联用的实验手段,模拟真实复杂的工业生产环境,在线采集偏光片三张光学膜的结构演化规律,并建立其与光学等性能的关系,为光学膜高端制造提供基础原理指导.最后,我们展望了新型显示偏

    3、光片光学膜今后的发展方向.关键词偏光片,同步辐射射线散射技术,拉伸加工,结构演化1引言信息社会,显示无处不在,以薄膜晶体管液晶显示(TFT-LCD)和有机发光二极管显示(OLED)为代表的新型显示成为日常生活和工作中信息交互的窗口.虽然以液晶和有机发光二极管命名,但光学膜却是构成新型显示的最主要材料.图1给出了TFT-LCD显示的基本结构,背光模组中有反射膜、导光膜、增亮膜、扩散膜等光学膜,显示模组主要由偏光片和液晶结构组成.偏光片是TFT-LCD和OLED显示中不可或缺的关键部件.TFT-LCD中的两层偏光片及液晶盒组合成光开关,决定背光源光线的通断.在OLED中,偏光片与1/4波片叠合,消

    4、除驱动OLED的金属电极对外界环境光的反射,保障成像质量.虽然我国在显示面板终端的产能和出货量已经是全球第一,产业链也不断向上游延伸拓展,但最上游的先进光学膜,特别是偏光片中的三张光学膜(偏光膜、相位差膜和支撑膜)目前研究基础还是相对薄弱,相关产品主要依赖进口.因此,为支撑新型显示产业可持续发展,研究偏光膜、相位差膜和支撑膜等先进光学膜加工中的基础科学和工程技术问题是非常必要的.偏光片是一种由偏光膜、相位差膜、支撑膜等多层高分子光学膜复合而成的器件1.基本结构为产生偏振效果的偏光膜夹在支撑膜和相位差膜之间,如图1引用格式:Han X,Zhang W,An M,Chen W,Cui K,Li L

    5、.The processing-structure-property relationship of optical films for display polarizer.Sci Sin Chim,2023,53:594605,doi:10.1360/SSC-2022-0262 2023 中国科学杂志社中国科学:化学2023 年第 53 卷第 4 期:594 605SCIENTIA SINICA C聚合物结构与性能专刊专题论述所示.目前,最常用的商用偏振片是由兰德2发明的H型偏光片.这种偏振片利用单轴取向的聚乙烯醇(PVA)膜作为基材,吸附二向色性材料碘(I2)制备而成,具有透光率高、偏振度

    6、高、易于制造等优点3.聚乙烯醇-碘(PVA-I)复合体及聚碘离子络合取向产生各向异性的光吸收,从而产生偏振光.在偏光膜两侧分别贴合支撑膜和相位差膜构成三明治夹心结构,既可以防止取向PVA收缩和碘等染料蒸发,也可以补偿液晶分子等产生的相位差,提高显示质量和耐候性.三醋酸纤维素酯(CTA)具有高透光率(93%)、低雾度(0.2%)、低双折射4等优异的光学性能,是支撑膜和相位差膜的主要原材料.偏光膜外侧的CTA支撑膜呈现光学各向同性,使PVA膜免受机械损伤、潮解氧化等影响;内侧CTA膜可以是光学各向同性的保护膜,对PVA膜进行支撑,也可以是利用应力光学原理(SOR)5拉伸后体现光学各向异性的光学相位

    7、差膜,起到扩大视角、提高色度对比度的作用.由于CTA成本高及水汽透过率高等缺点,聚甲基丙烯酸甲酯(PMMA)、聚对苯二甲酸乙二醇酯(PET)、环烯烃(COP)和聚碳酸酯(PC)等疏水性高分子也被用于成支撑膜或者相位差膜,在新型显示中逐渐替代部分CTA的市场6.偏光片中的每一层光学薄膜在制造过程中都经历了多加工步骤、多加工外场、多尺度结构交互耦合的工艺过程.多加工步骤通常需要包括塑化/共混、挤出、流延、纵拉、横拉、热定型、涂覆/功能化等,每个加工步骤又涉及温度、应变、应变速率、溶剂等多加工外场.具有结晶能力的PVA、PET、CTA在加工过程中会涉及从链段到片晶等多尺度结构的快速演化.Miyaza

    8、ki等7的前期工作虽解释了拉伸过程中PVA片晶和纳米纤维结构的结构演化,但对PVA偏光膜的溶液加工过程中周期排列的纳米纤维结构及他们间隙的定量研究并未开展,这些结构对偏光性能具有十分重要的影响.Kumar等8对拉伸CTA的结晶行为及双折射性能也仅局限于离线样品.Cakmak等9对PET不同拉伸方式诱导双折射的产生进行了较为完善的总结,但作为支撑膜使用的PET,复杂加工环境(包含湿度等影响因素)及热定型等后处理对其加工过程中的结晶取向行为仍需系统研究.由于多加工步骤、多加工外场和多尺度结构的交互耦合,光学膜制造可看成是在N维变量空间中求最优解,极具挑战.为高效寻找最优加工工艺和条件,本课题组利用

    9、同步辐射X射线散射高时间分辨的优势,研制发展了一系列模拟薄膜加工的原位研究装备和平台技术,在线研究了PVA偏光膜、CTA相位差膜、PET支撑膜在模拟工业制造过程中的结构演化过程,构建了光学膜的加工-结构-性能关系的数据图谱,与相关企业合作,指导光学膜产品的研发.本文简要总结了本课题组的相关研究进展,并对拉伸加工高分子光学薄膜的机遇与挑战进行了总结与展望.2光学膜加工全流程综合原位研究平台为了高效系统地研究偏光片光学膜“配方设计-流延加工-服役性能”的科学与工业问题,本课题组研制和发展了一系列基于同步辐射X射线散射独特的原位装置和平台技术,自主设计研制了包括可与同步辐射X射线散射联用的溶液拉伸、

    10、高温高蒸气压拉伸和大型立式多维拉伸等模拟光学膜拉伸加工的原位装置.PVA偏光膜拉伸、碘染、交联、补色等加工流程都需要在特定溶液体系中进行.本课题组研制的原位溶液拉伸装置如图2a所示,可实现样品在各种溶液环境下拉伸加工和原位X射线散射结构检测.CTA等含氢键薄膜的后拉伸加工工艺需在溶剂气氛环境下开展.本课题组研发了高温高压拉伸装置,如图2b所示,通过温度场和溶液气氛的引入,可以提供CTA等光学膜体系加工过程中多个加工参数窗口.PET光学膜工业加工涉及双向拉伸的多步骤拉伸工艺.本课题组10为此研制了大型立式多维拉伸装置,如图2c所示.该装置包括两组相对独立的“井”字形导轨,在无声链系统的驱动下,两

    11、个方向独立运动,可实现与高分子薄图 1TFT-LCD显示的基本结构(网络版彩图)Figure 1The basic structure of TFT-LCD(color online).中国科学:化学2023 年第 53 卷第 4 期595膜双向拉伸工艺相关的所有可能拉伸方式,如单轴受限拉伸(UCW)、单轴不受限拉伸(UFW)、双轴同步拉伸(SB)和双轴异步拉伸(SEQ)等.以上装置已成功在上海光源10U、16B和19U等X射线散射实验站联用,开展了系统原位研究,为光学高分子薄膜的原位结构转变机理研究提供设备支撑.需特别说明的是,上海光源10U定义为工业线站,其实验站空间超大,为安装双向拉伸、

    12、吹膜、流延等模拟薄膜工业加工的大型原位装备提供了可能,将极大地支撑我国高分子加工物理研究和创新产品研发.除同步辐射原位研究平台技术外,本课题组11还研究发展了针对薄膜加工的多尺度模拟平台,包括流延、单向拉伸、溶剂挥发和斜向拉伸等.图3给出了我们建立的斜拉工艺有限元模拟的模型,模拟平台考虑了斜拉夹具双侧非等速拉伸的特征,能够模拟各参数变化下(双侧拉伸速率,温度等)斜拉过程中各场(x、y方向速度场,xy应力场以及厚度场)变化.该模拟平台可以指导工业产线上的斜拉工艺参数高效调控,助力获得均匀的斜拉光学薄膜.3PVA偏光膜拉伸碘染加工PVA偏光膜加工需要经历膨润、碘染、交联、拉伸等多个加工步骤,其中包

    13、含了晶体、片晶、纳米纤维等多尺度结构的演化,以及碘(I2)、碘离子(I)、碘三离子(I3)、碘五离子(I5)等二向色性物质随拉伸发生的结构和含量变化.此外,加工过程还受到碘、碘化钾(KI)和硼酸溶液的浓度场、温度场、拉伸场等多个外场的影响,涉及的基础科学问题主要为:(1)拉伸诱导PVA晶体的破坏与重构;(2)拉伸诱导PVA与二向色性物质的络合反应及形态演化;(3)硼酸交联与络合反应、链取向等结构演化的协同与竞争.依托同步辐射小角X射线散射(SAXS)和广角X射线衍射(WAXD)高通量在线试验技术,结合研制的原位溶液拉伸装置,实时跟踪PVA偏光膜拉伸加工过程中的结构演化,根据工业生产的加工顺序逐

    14、步控制外场的变量,从而构建了PVA与二向色性材料动态相互作用的物理机制.Zhang等12首先研究了不同温度(0、24、40)的水环境下拉伸外场对PVA膜结构的影响.如图4ac所示,Zhang等根据应力-应变(-)、应力/应变的导数(d/d)、WAXD和SAXS信号对应的结构演化,将PVA在水中拉伸的结构演化行为划分为四个区间.在区间I,d/d持续降低,拉伸导致了结晶度的降低和片晶长周期(L1)的增加,说明发生了拉伸诱导的晶体溶解及片晶间无定形的拉伸.区间II为应力平台区及纳米纤维结构的形成区,d/d逐渐停止下降并保持不变.子午线方向的L1在区间I和II的边界由上升趋势转变为下降趋势,由于纳米纤

    15、维结构的生成增强了PVA膜,同时释放了部分施加在片晶上的应力,减缓了d/d的下降趋势,且导致了子午线方向片晶长周期的减小.结合区间I和II结晶度下降趋势,证明了片晶-纳米纤维结构图 2可与同步辐射联用的原位溶液拉伸装置(a),高温高压拉伸装置(b)和大型立式多维拉伸装备(c)10(网络版彩图)Figure 2(a)In situ solution stretching device,(b)high temperature and high pressure stretching device and(c)large vertical multi-dimensionalstretching eq

    16、uipment for use with synchrotron radiation 10(color online).韩雪晴等:新型显示偏光片光学膜的加工-结构-性能关系596的转变不是重结晶而是熔融-重构过程.继续施加应力到区间III,赤道线方向SAXS信号峰出现,纳米纤维结构开始周期性排列.纳米纤维间隙(Lf)仅有16 nm左右,说明水环境下的拉伸可以将PVA片晶结构转变为纳米量级的、高度取向、平行排列的纳米纤维结构.在应变硬化IV区间,分子链高度取向,Lf在不同温度下均持图 3斜向拉伸和y向拉伸同时进行的示意图11(网络版彩图)Figure 3The schematic of the

    17、oblique stretching with y-direction stretching simultaneously 11(color online).图 4(a)24水中拉伸PVA薄膜应力-应变(-)曲线(正方形)及其导数曲线(d/d-)(圆形);(b)采集的SAXS和WAXD图;(c)PVA薄膜在水中不同温度(0、24、40)下拉伸的-曲线,结晶度-应变(c-)曲线,子午线(空心)和赤道线(实心)方向的片晶长周期(L1)和纳米纤维结构的周期(Lf)随应变的演化;(d)PVA薄膜在水中拉伸过程中的结构演化示意图12(网络版彩图)Figure 4(a)The stress-strain(

    18、-)curve(squares)and its derivative curve(d/d-)(cycles)at stretching temperature of 24;(b)SAXS andWAXD patterns,(c)-curves,crystallinity-strain(c-)curves,the long period of lamellae(L1)in meridian(open symbols)and equator(solidsymbols),and the period of nanofibrils(Lf)as function of strain at differe

    19、nt temperatures(0、24、40)of PVA films stretched in the water atdifferent temperatures;(d)schematic picture of the structural evolution of PVA film during stretch in water 12(color online).中国科学:化学2023 年第 53 卷第 4 期597续降低.Lf的降低主要来源于拉伸诱导的压缩效应(即将水从纤维间隙挤出)和纤维进一步细化.研究发现,应力场对于PVA膜在水中拉伸产生的结构演化起主要作用,而温度场对力学行为和

    20、片晶长周期的影响相对较弱.但升高温度可以提高分子链的运动能力,使纳米结构排列更为规整并获得更大的纤维间间距.这些结果对生产高度有序、光学性能优异的偏光膜有很好的指导作用.PVA膜在水中拉伸后会进行碘染过程.在碘染过程中也会施加应力场,降低复合体的构象熵并促进碘与PVA的络合反应.Miyasaka等13的拉曼实验表明,I5存在无定形区中,高碘浓度时I3存在于PVA晶区形成PVA-I3.Zhang等14结合WAXD和SAXS观察了PVA膜在不同浓度的KI/I2水溶液中拉伸时PVA片晶向纳米纤维转变、聚碘离子(包括无定形区被PVA伸直链包围的I5与PVA晶区形成的一维I3晶格,统一以polyiodi

    21、ne表示)、PVA-I3复合晶体形成的在线演变.如图5a所示,随着拉伸的进行,PVA晶体的衍射弧逐渐向赤道线方向集中.随着碘浓度和应变的增大,子午线方向上的竖条状polyiodine含量保持增长且增长速度相对较快.另外,碘浓度的增加会使PVA膜的结晶度和纳米纤维形成的起始应变及其规则排列的应变降低,这说明拉伸中碘离子的存在虽然降低了PVA的结晶度,但促进了PVA-I复合体的形成.赤道线方向PVA-I3复合晶体也明显受到碘浓度和拉伸比的影响.应力在诱导复合体组分增加的同时,亦可以使在吸附阶段就形成的复合体解构,这与应力诱导片晶的无定形化类似.综合应变与浓度对复合体的影响,构建了PVA在碘溶液中的

    22、二维空间相图,如图5b所示,这为偏光膜工业加工提供理论指导.在高湿度和高温环境中,偏光膜较容易发生蓝光泄露的问题,这主要是由于覆盖低波长部分的PVA-I3失效造成.蓝光泄露这一耐候性问题大大限制了碘染PVA偏光膜的应用15.在实际加工过程中,硼酸交联步骤有助于提高偏光膜耐候性,是偏光膜加工过程中非常重要的环节.在Lee和Ohishi等14的报道中,硼酸在PVA拉伸过程中具有抑制结晶和促进PVA-I复合体形成的作用.本课题组的Ye等16为了将PVA膜在硼酸溶液中拉伸的宏观力学行为和微观结构演化关联起来,设计了以硼酸浓度为单一变量的PVA膜拉伸原位实验.从热力学角度看,硼酸的加入作为化学交联点降低

    23、了体系的熵,促进纳米纤维的出现.从动力学角度看,硼酸的加入抑制了纳米纤维的生长和数量增加,使得纳米纤维的最终含量下降.进一步,Ye等17将变量范围扩大到碘浓度、硼酸浓度、拉伸比,来模拟复杂加工环境下PVA-I复合体的演化行为.图6a为PVA薄膜在混合溶液中拉伸过程中具有代表性的二维衍射图:拉伸前,中高碘浓度溶液中出现了微弱的polyiodine的衍射信号;碘浓度一定时,polyiodine信号出现的应变也会随着硼酸浓度的增加而减小,但硼酸浓度的增加会使晶体信号减弱.中高碘浓度范围整个拉伸过程中polyiodine长度随应变的演化如图6b所示.所有polyiodine最终都生长到几乎相同的尺寸:

    24、405.图6c对比了高碘浓度时不同硼酸浓图 5(a)PVA薄膜在不同应变和碘浓度下的二维WAXD花样;(b)PVA在应变和碘浓度二维空间相图14(网络版彩图)Figure 5(a)2D WAXD patterns of the PVA films at different strains and concentrations of KI/I2aqueous solution.(b)Phase diagram of PVA in twodimensional space of strain and iodine concentration 14(color online).韩雪晴等:新型显示偏光

    25、片光学膜的加工-结构-性能关系598度下PVA-I3复合晶体取向与聚碘离子长度随应变的关系.取向PVA-I3复合晶体含量演化规律和聚碘离子长度的演化规律一致,但是出现应变前者相对后者具有一定的滞后.PVA拉伸过程中聚碘离子和PVA-I3复合晶体结构演化与应变、混合溶液中碘和硼酸浓度关系密切.图6d的结构示意图描述了这种结构转变原理.拉伸初期,整体表现为弹性力学行为,结晶度保持不变,子午线方向片晶长周期随无定形区形变而增加.聚碘离子的归一化强度在低、中碘浓度下几乎为零,高碘浓度下浓度不为零,可能是因为高碘浓度下生成了PVA-I3复合晶体.进一步拉伸整体结晶度快速下降,随着碘浓度的增加整体结晶度的

    26、下降临界应变点提前且下降速度更加剧烈.结晶度的整体演化过程对硼酸浓度的变化不敏感.虽然硼酸和碘都起到交联点的作用,但他们之间区别是碘能够与PVA结合形成PVA-I3复合晶体.高碘浓度下,棒状的I3进入伸直的PVA链,导致整体结晶度的下降更快且下降程度更强,这也是PVA-I3复合晶体起初略微下降的原因.随着拉伸的进行,PVA-I3复合晶体在一定应变后出现快速增加,随后进入一个平台期.聚碘离子表现出相同的演化规律,但出现的应变点早于PVA-I3复合晶体.一种合理推测是在拉伸过程中被破坏的晶体转变成为无定形,但其中仍保留了一定的有序结构,这为PVA分子链与棒状聚碘离子结合提供了低熵的环境,因此有一定

    27、有序结构的无定形PVA链可与I5结合.被PVA分子链所包围的聚碘离子也是形成PVA-I3晶体的前驱体,在到达特定应变时会向PVA-I3晶体转变.拉伸后期,由于纳米纤维的形成,出现了应力硬化行为.碘浓度的增加有效促进了PVA-I3晶体的生成和生长,而硼酸浓度的增加尽管有利于PVA-I3晶体的成核但抑制了其晶体生长.PVA、PVA-I3晶体以及聚碘离子在复杂外场下拉伸过程中的演化规律揭示,为进一步制备出高耐候性PVA偏光膜提供了理论路线.4CTA相位差膜双折射性能多维调控CTA光学膜是偏光片中最基础的薄膜之一,其成本占据偏光片总成本的50%18.CTA薄膜具有双折射可控的特性,在液晶器件的光学补偿

    28、和偏光保护方面广泛应用.CTA本身具有光学各向异性小的特点,可图 6(a)不同硼酸、碘浓度下拉伸获得具有代表性的宽角二维图.(b)聚碘离子的长度随应变的演化.(c)聚碘离子的长度与取向PVA-I3-晶体含量随应变关系.(d)PVA在不同硼酸和碘浓度溶液中拉伸的演化示意图17(网络版彩图)Figure 6(a)WAXD patterns collected during stretching under different boric acid and iodine concentrations.(b)The crystal size evolutions ofpolyiodide as a f

    29、unction of strain.(c)Plots of the length of polyiodide and the relative content of OC vs.strain.(d)Schematic images of the PVAstretching in the mixed solution at different stages 17(color online).中国科学:化学2023 年第 53 卷第 4 期599通过加入添加剂制备光学各向同性的光学保护膜、支撑膜19.CTA分子链拉伸取向后产生取向双折射(nin),可以作相位差膜或者光学补偿膜使用.双折射是指具有极

    30、化率各向异性的高分子有一定取向后产生的宏观光学现象20,与材料的本征双折射(nino)和分子链取向程度(F)密切相关.根据Kuhn和Grun的模型:nn F=(1)ininonino受材料取代基种类、极化率、结晶度(c)等参数所影响.CTA是一种半晶高分子,热拉伸在使分子链取向的同时,也会改变其他结构参数包括结晶度、晶体尺寸和取向度等.An等21系统地研究了不同温度下CTA光学膜相关结构参数在拉伸下的演化,得到了拉伸与光学性能的变化规律.根据动态热机械分析(DMA)和差示扫描量热法(DSC)结果划分了4个温度区间.不同温度区间拉伸得到的典型WAXD二维衍射图谱如图7a所示.图7be分别为在不同

    31、温度下拉伸的应力-应变空间分布图,和基于原位WAXD测试获得的结晶度、晶体沿(010)晶面方向的晶粒尺寸L010和取向参数.不同温度区间,CTA的结构演变不同.图 7CTA薄膜在不同温度拉伸得到的2D WAXD图(a)、应力()(b)、结晶度(c)(c)、晶体尺寸(L010)(d)和取向参数(f010)(e)在应变和温度空间的等高线图21(网络版彩图)Figure 72D WAXD patterns(a)and contour maps of stress()(b),crystallinity(c)(c),crystal size(L010)(d)and orientation paramet

    32、er(f010)(e)forCTA films stretched at different temperatures and strains 21(color online).韩雪晴等:新型显示偏光片光学膜的加工-结构-性能关系600整体来看,随着温度的升高,晶体衍射信号增强.随着拉伸应变的增加,晶体信号向赤道线或子午线方向聚集.在区间I(60T125)中,CTA膜的结构演变受到吸湿水分的显著影响.在区域II(125T195)中,由于温度低于玻璃化转变温度(Tg),并且不受吸湿水分的影响,CTA膜拉伸过程中的晶体结构参数如c和L010没有发生明显变化.拉伸诱导的晶体取向变得更容易.在Tg(1

    33、95)附近的区域III(175T195)和区域IV(195Tnzny)就是显示领域大家正在努力研究开发的一种光学膜.参考文献1Semenza P.Inf Display,2011,27:8122Land EH.J Opt Soc Am,1951,41:9579633Ma J,Ye X,Jin B.Displays,2011,32:49574Sata H,Murayama M,Shimamoto S.Properties and applications of cellulose triacetate film.In:Macromolecular Symposia.Weinheim:Wiley-

    34、VCH GmbH,20045Treloar LG.The Physics of Rubber Elasticity.Oxford:Oxford University Press,19756Murata K,Sasaki Y,Oya T,Suzuki T.SID Sympos Digest Tech Papers,2016,47:5145177Miyazaki T,Hoshiko A,Akasaka M,Shintani T,Sakurai S.Macromolecules,2006,39:292129298Kumar V,Kumari M.Optical anisotropy of cellu

    35、lose esters and its application to optical functional films.In:Handbook of Sustainable Polymers:Processing and Applications.New York:Jenny Stanford Publishing,2016.3413849Martins CI,Cakmak M.Polymer,2007,48:2109212310Zhu J,Liu S,Lu Y,Cheng H,Han X,Liu L,Meng L,Yu W,Cui K,Li L.Rev Sci Instrum,2023,94

    36、:02390611Zhang M,Yang E,Zeng J,Ji J,Tian F,Li L.J Non-Newtonian Fluid Mech,2021,295:10459712Zhang Q,Zhang R,Meng L,Ji Y,Su F,Lin Y,Li X,Chen X,Lv F,Li L.Polymer,2018,142:23324313Miyasaka K.PVA-Iodine complexes:formation,structure,and properties.In:Structure in Polymers with Special Properties.Heidel

    37、berg:Springer,1993.9112914Zhang R,Zhang Q,Ji Y,Su F,Meng L,Qi Z,Lin Y,Li X,Chen X,Lv F,Li L.Soft Matter,2018,14:2535254615Schuler NW.Iodine stained light polarizer.US Patent 4166871,1979-09-0416Ye K,Li Y,Zhang W,Zhang Q,Chen W,Meng L,Wang D,Li L.Polym Testing,2019,77:10591317Ye K,Li Y,Zhang W,Chen W

    38、,Zhang Q,Wang D,Li L.Polymer,2021,212:12329718Shi GY,Peng LQ,Ma L.Mater Rep,2021,35:678683(in Chinese)时钢印,彭龙泉,马莉.材料导报,2021.35:67868319Mori H.High performance TAC film for LCDs.In:Liquid Crystal Materials,Devices,and Applications XI.San Jose:SPIE,200620Yamaguchi M,Manaf MEA,Songsurang K,Nobukawa S.Ce

    39、llulose,2012,19:60161321An M,Zhang Q,Ye K,Lin Y,Wang D,Chen W,Yin P,Meng L,Li L.Polymer,2019,182:12181522Wu T,Han X,Min X,An M,Zhao J,Yu W,Li L.Carbohydrate Polyms,2022,296:11991523Min X,Wu T,Han X,An M,Yu W,Li L.ACS Appl Polym Mater,2022,4:6255626424Yamaguchi M,Okada K,Manaf MEA,Shiroyama Y,Iwasaki

    40、 T,Okamoto K.Macromolecules,2009,42:9034904025Zhang W,Yan Q,Ye K,Zhang Q,Chen W,Meng L,Chen X,Wang D,Li L.Polymer,2019,162:919926Zhang W,Chen J,Yan Q,Zhang Q,Zhao J,Wu T,Wang D,Meng L,Chen W,Li L.Polym Testing,2021,96:10714327Suzuki H,Grebowicz J,Wunderlich B.Brit Poly J,1985,17:1328Chen J,Zhang W,C

    41、hen Y,Zhang H,Ye B,Yu W,Li L.Polymer,2022,253:124987韩雪晴等:新型显示偏光片光学膜的加工-结构-性能关系604The processing-structure-property relationship of optical films fordisplay polarizerXueqing Han1,Wenwen Zhang1,Minfang An1,Wei Chen1,Kunpeng Cui2*,Liangbin Li1*1National Synchrotron Radiation Laboratory,University of Sc

    42、ience and Technology of China,Hefei 230029,China2Department of Polymer Science and Engineering,University of Science and Technology of China,Hefei 230029,China*Corresponding authors(email:;)Abstract:Polarizer is one of the most important components of thin film transistor liquid crystal display(TFT-

    43、LCD)and organic light-emitting diode display(OLED).It is a multilayer polymer composite film composed of polarizing film,supporting film,retardation film and other optical films.The material used for each component film is different,and alsoplays a different role in the polarized film.With the devel

    44、opment of new displays,the industry scale and demand forpolarizers are surging.However,at present,domestic polarizers mainly rely on imports.The reason is that the processingmechanism of each layer of molecular film in polarizers is not clear,and the basic research is weak.This reviewintroduces the

    45、research progress of polyvinyl alcohol(PVA)polarizing film,cellulose triacetate(CTA)retardation filmand polyethylene terephthalate(PET)supporting film.Through the experimental means of high-time resolutionsynchrotron radiation X-ray scattering combined with a variety of in-situ tensile devices,the r

    46、eal complex industrialproduction environment was simulated.The structure evolution law of three optical films was collected online,and therelationship between the structure and optical properties was established,providing basic principle guidance for high-end optical film manufacturing.Finally,we look forward to some future development directions of new display polarizeroptical films.Keywords:polarizer,synchrotron radiation X-ray scattering technique,tensile processing,structure evolutiondoi:10.1360/SSC-2022-0262中国科学:化学2023 年第 53 卷第 4 期605


    注意事项

    本文(新型显示偏光片光学膜的加工-结构-性能关系_韩雪晴.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png