欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    量子磁场测量技术在生物磁场...像领域的应用现状与产业趋势_孙畅.pdf

    • 资源ID:327589       资源大小:1.18MB        全文页数:10页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    开通VIP
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    量子磁场测量技术在生物磁场...像领域的应用现状与产业趋势_孙畅.pdf

    1、|信息通信技术与政策量子磁场测量技术在生物磁场成像领域的应用现状与产业趋势孙畅丁铭(北京航空航天大学仪器科学与光电工程学院,北京 100191)摘要:量子磁场测量技术可实现磁场测量灵敏度的跨越式发展,近年来成为世界各国及地区的研究热点。首先对量子磁场测量技术的发展进行了简述,然后介绍了量子磁场测量技术在生物磁场成像领域的应用,最后分析了量子磁场测量技术的两大重要应用方向(心磁图仪和脑磁图仪)及其产业现状和未来发展趋势。关键词:量子磁场测量;心磁图仪;脑磁图仪;原子磁力计;超导量子干涉仪中图分类号:TN918.0413 文献标志码:A引用格式:孙畅,丁铭.量子磁场测量技术在生物磁场成像领域的应用

    2、现状与产业趋势J.信息通信技术与政策,2023,49(7):68-77.DOI:10.12267/j.issn.2096-5931.2023.07.0090 引言量子磁场测量技术作为量子信息领域的重要发展方向之一,可实现超高灵敏度的磁场测量,在生物医疗、地球物理、工业检测、前沿科学等领域具有重要的应用价值,尤其在生物磁场成像领域,愈加凸显其重要地位,目前已成为世界各国及地区的研究热点。2018 年,美国推出国家量子计划法案,计划在10 年内投入12.75 亿美元,全力推动量子科学发展,生物医学成像中的磁场检测是其重要研究方向之一。2020 年,美国能源部宣布在未来 5 年投入 6.25 亿美元

    3、建设 5 家量子信息科学研究中心,由美国阿贡国家实验室领导的下一代量子科学与工程中心(Q-NEXT)重点关注的三项核心量子技术就包括用于生命科学领域的超高灵敏度磁场传感器。从 2016 年起,欧盟委员会连续发布多个量子计划,其中斥资 10 亿欧元的“量子技术旗舰计划”最为重要,而用于医学成像的基于微型原子气室量子磁场测量技术则作为其首批量子技术旗舰项目之一。英国已将量子磁场测量技术提升到国家战略高度,2015 年由英国技术战略委员会提出的英国未来 30 年量子技术商业化应用初步路线图显示,在520 年内,将实现对心脏和大脑功能的医疗诊断。日本对于量子信息技术一直十分重视,2018 年发布的“量

    4、子飞跃旗舰计划”(Q-LEAP)将量子测量集中在量子生物磁场传感等方向,主要开发用于生物医学技术的量子传感设备,包括具有高灵敏度和高空间分辨率的脑磁图测量原型系统。我国也将量子磁场测量技术纳入国家科技发展战略重要领域,国家创新驱动发展战略纲要和中华人民共和国国民经济和社会发展第十三个五年规划纲要把量子信息技术作为重点培养的颠覆性技术之一。2016 年,“量子调控与量子信息”重点专项成立,并将“高精度原子磁强计”作为重点专项研究主题之一1。可以看出,量子磁场测量技术在生物医学领域的86专题:量子信息技术2023 年第 7 期应用价值和巨大发展前景已经成为世界各国及地区的共识,而目前的应用场景主要

    5、集中在生物磁场成像中的心磁成像和脑磁成像两大领域。1 量子磁场测量技术发展目前,已有磁场测量技术主要包括霍尔传感器、磁阻传感器、感应线圈传感器、磁通门磁强计、磁共振磁强计、超 导 量 子 干 涉 仪(Superconducting Quantum Interference Devices,SQUID)以及原子磁力计。其中,霍尔传感器、磁阻传感器、感应线圈、磁通门磁强计属于传统的磁场传感器,结构简单,技术成熟,但灵敏度较低;磁共振磁强计、SQUID 及原子磁力计则是基于量子磁场测量技术,可以实现灵敏度更高的磁场测量水平。20 世纪 30 年代发展起来的基于电磁感应原理的磁通门磁强计,灵敏度只能达

    6、到 nT(10-9 T)量级;20世纪 50 年代,磁共振磁强计逐渐发展起来,灵敏度相比于磁通门磁强计提升约 3 个数量级,达到了 pT(10-12 T)量级,但仍不能完全满足生物磁场信号的测量需求;20 世纪 60 年代,基于约瑟夫森效应的 SQUID开始出现,并于 20 世纪 90 年代达到了 1 fT/Hz1/2(10-15 T)的磁场测量灵敏度,可用于心磁、脑磁测量。但 SQUID 工作条件较为苛刻,需要保证 24 h 不间断的液氦冷却,维护成本极高。大脑磁场 心脏磁场 肺颗粒磁场 地球 磁场 原子磁力计技术 计计SQUID 技术 磁共振 技术 磁通门 技术 磁场强度/T 10-18

    7、10-15 10-12 10-9 10-6 10-3 图 1 磁场测量技术进展与生物磁场幅度对比2002 年,美国普林斯顿大学成功研制出基于无自旋交 换 弛 豫 效 应(Spin-Exchange Relaxation Free,SERF)的原子磁力计2,其理论测量灵敏度可达 aT(10-18 T),目前已公开报道的最高测量灵敏度指标为0.16 fT/Hz1/2 3。原子磁力计可工作在常温状态,无需液氦制冷,因此在生物磁场测量领域的应用场景更为灵活,代表了全球量子磁场测量技术发展的新方向。图 1 显示了磁场测量技术进展及对应的生物磁场幅度。从图 1 可以看出,在生物磁场测量领域,基于量子磁场测

    8、量技术的 SQUID 传感器和零场原子磁力计满足使用需求,目前市场上已有成熟产品。SQUID 传感器的全球前端企业主要有德国 Infineon Technologies,奥地利 AMS,日本 Kohshin Electric、Asahi Kasei Micro Devices、TDK Corporation,荷兰 NXP Semiconductors,瑞士TE Connectivity,美国 Honeywell、Allegro Microsystems,以及比利时 MELEXIX。而能够提供零场原子磁力计商用产品的企业主要是美国的 QuSpin 以及我国的北京未磁科技有限公司。2 量子磁场测量

    9、技术在生物磁场成像领域的应用 人体生物磁场中包含人体内部各种组织以及器官的丰富信息,对人体生物磁场进行测量,可以无创、无接触地获得有关人体内部健康或疾病的信息,其检测效果及便利程度已超出对人体生物电的测量。近几十年来,生物磁场检测技术取得了令人瞩目的成就。随着量子磁场测量技术的发展进步,不断地促进心磁图、脑磁图等先进技术的临床应用,使得生物磁场成像已成为极其重要的医学手段,在心脑血管重大疾病诊断等医学领域具有重要的应用价值。2.1 心脏磁场成像人体心磁信号是在心脏跳动的过程中由心肌细胞内离子活动产生,且信号微弱,只有几十 pT 量级,相当于地球磁场(大约为50 000 nT)的百万分之一。心磁

    10、图(Magnetocardiography,MCG)是一种对心脏磁96|信息通信技术与政策场信号进行无创、无辐射检测的技术,目前采用的磁场测量技术途径主要为 SQUID 或者原子磁力计。大量的临床研究表明,MCG 有助于冠心病、心律失常、心室肥厚等心血管疾病的筛查,以及胎儿心脏功能的评估。相应的分析方法主要是对 MCG 得到的磁场分布图、电流密度分布图以及磁场强度时间谱线进行分析以实现对各类疾病的临床诊断。2.1.1 冠心病针对冠心病,MCG 主要是对心肌缺血造成的心肌复极不一致进行检测。研究表明,MCG 能够实现冠心病的精确诊断。Chaikovsky 等4针对 49 例健康人及51 例冠心病

    11、患者(18 例为冠状动脉三支病变、17 例为双支病变、16 例为单支病变)进行了 MCG 检查,并分析了磁场分布图及电流密度分布图的变化情况,结果显示健康人组在心室复极期(ST-T 段)的电流分布方向均一致,而冠心病患者组则出现额外电流区,其方向与最大矢量方向不同,且出现位置与狭窄冠状动脉的解剖位置有关。同时,该 MCG 与冠状动脉造影进行对比,结果表明心磁图的诊断具有高度敏感性(91%)和特异性(84%),判断冠状动脉病变部位的准确率为79%4。Li 等5针对 116 例健康人和 101 例冠心病患者进行 MCG 研究,发现冠心病患者组 MCG 中的 T 波最大电流密度矢量值的比值(R-ma

    12、x/T-max)、R 值(ST 段间期严重异常伪电流密度图与总伪电流密度图的比率)及平均角度(ST 段间期伪电流密度图中最大向量角度的平均值)显著高于健康人组。在 101 例冠心病患者中,MCG、心电图和超声心动图检测出心肌缺血的比例分别为 74.26%、48.51%和 45.54%。由此可见,MCG 对冠心病患者的诊断准确率明显高于心电图和超声心动图5。2.1.2 心律失常心磁图可用于对心律失常患者进行评估,并准确定位心律失常部位。Ito 等6根据电生理检查结果将特发性室性期前收缩患者分为右心室流出道和主动脉窦两组,比较分析两组的心磁图后发现,利用心磁图能够定位流出道室性期前收缩的起源部位,

    13、并具有较高准确率。一项针对 51 名患者的研究显示,利用心磁图的 3 个参数区分不同起源部位(右心室流出道、主动脉窦)室性心律失常准确率达 94%6。Korhonen 等7比较了 53 名有室性心动过速病史和 83 名无室性心动过速病史心肌梗死患者的心磁图,结果发现心磁图晚期电活动和碎裂 QRS 波群这两个参数在两组间差异有统计学意义,并进一步提出心磁图对于室性心动过速的预测能力较心电图更强。2.1.3 心肌病心磁图可针对非缺血性扩展型心肌病、心室肥厚等进行诊断或风险评估。Kawakami 等8利用 MCG 测量左心室传导时间(Left Ventricular Conduction Time,

    14、LVCT),以预测非缺血性扩张型心肌病(Non-Ischemic Dilated Cardiomyopathy,NIDCM)患者的心血管不良事件。与健康人组相比,NIDCM 组的 LVCT 显著延长,在 2.2 年的随访期间,心血管不良事件发生率为 11/63(约 18%)。研究结果表明,MCG 可无创地显示 QRS持续时间正常 NIDCM 患者的 LVCT,且 LVCT 延迟可作为 NIDCM 患者的心血管不良事件独立预测因子8。华宁等9对 38 例临床诊断为左心室肥厚的患者及 29 例健康人进行 MCG 检查,分析比较其诊断特异度、灵敏度,研究结果表明,左心室肥厚患者心磁图与健康人组有显著

    15、不同,心磁图对左心室肥厚诊断的灵敏度、特异度、预测准确率分别为 68.4%、84.9%、82.4%,心磁图可用于左心室肥厚患者无创性检查,并具有一定诊断价值9。2.1.4 胎儿心律失常胎儿心电图常常受到胎儿表面皮脂腺、宫颈等绝缘物以及母体等因素的干扰从而影响结果的准确性。相比于胎儿心电图,胎儿心磁图(fetal Magnetocardiography,fMCG)由于磁场信号不受人体组织干扰,因此可穿透宫颈、皮脂腺等组织将胎儿的心磁信号与母体的心磁信号分开,能够更加准确且直观地反映胎儿的心脏功能情况,是目前唯一可以在孕期对胎儿心脏电生理活动进行准确监测的技术。Wakai 等10进行了一项利用fM

    16、CG 表征折返性胎儿室上性心动过速(Supraventricular Tachycardia,SVT)的起始和终止电生理模式的研究,受试者由诊断为 SVT(胎心率 200 bpm)的 13 名胎儿组成,fMCG 记录了 5 种不同的启动模式和 4 种终止模式,最常见的启动模式涉及折返性自发性房性早搏,研究结果表明,fMCG 提供一种分析子宫内复杂快速心律失常的无创方法,其功效接近产后心电图监测。Campbell 等11观察因胎儿室上性心动过速入院的两名单胎妊娠患者和一名双胎妊娠患者,运用 fMCG 来07专题:量子信息技术2023 年第 7 期监测孕妇及胎儿心律失常情况并指导氟卡尼药物治疗,结

    17、果显示 3 例胎儿心律失常均得到有效的治疗且出生后无复发。2.2 脑部磁场成像人类的脑磁信号来自大脑皮层中作为主要投射神经元的锥体细胞,当大脑产生意识活动时,锥体细胞内将发生微弱的电流变化从而产生脑磁信号。脑磁信号非常微弱,仅为数十 fT 量级,约为地球磁场的 1/109。脑磁图(Magnetoencephalography,MEG)是利用多通道高灵敏量子磁场传感器置于受试者大脑上方连续采集脑部磁场信号,再经过数据处理,最终形成。与脑电信号相比,脑磁信号不受头皮软组织、颅骨等人体组织阻抗的影响,衰减率低且不易发生畸变,因此能够获得更加细微且准确的大脑活动信息,具有较高的时间及空间分辨率,在癫痫

    18、病灶定位、阿尔兹海默症早期识别等脑疾病的临床研究方面具有重要的应用价值和广泛的应用前景。2.2.1 癫痫病灶定位MEG 作为一种高灵敏、非侵入、无辐射的检查技术在癫痫病灶定位方面显示出重要的应用价值。Knowlton 等12对 49 例手术治疗癫痫发作的患者进行了前瞻性的研究,将 MEG 数据求逆所得偶极子与MRI 结构影像信息叠加整合形成磁源成像(Magnetic Source Imaging,MSI),并探索 MSI 和颅内脑电图(Intracranial Electroencepholography,IEEG)定位的一致性,发现 MSI 对癫痫病灶定位的阳性预测值为 82%90%,MSI

    19、 与 IEEG 一致性的 Kappa 系数(用于一致性检验的系数)为 0.274 4,表明 MSI 在癫痫病灶定位方面具有足够的临床有效性。由于顶叶癫痫较为少见,且特异性放电更分散,因此 IEEG 对顶叶癫痫定位准确度较低,而 MEG 可以对顶叶皮层的癫痫病灶进行较为准确的定位。Oka 等 13对一例 MRI 未发现明显异常的 4 岁癫痫患儿进行检查,发现 MEG 将癫痫病灶定位于左顶叶缘上回附近,与 IEEG 和 PET 检查结果一致,同时结合临床表现,确诊该患儿为非典型儿童良性部分性癫痫,该研究证明 MEG 定位顶叶癫痫的有效性。2.2.2 阿尔兹海默症阿尔兹海默症是一种渐进性痴呆症,病理

    20、改变积累缓慢,直到产生痴呆症临床症状,因此对阿尔兹海默症进行早期诊断至关重要。MEG 作为一种无创表征大脑细微电生理变化的技术途径,可作为阿尔兹海默症早期潜在生物标志物,对阿尔兹海默症早期识别具有重要价值。Lopez 等14在一项对 33 名轻度认知障碍(Mild Cognitive Impairment,MCI)患者转化为阿尔兹海默症的风险预测研究中,将 MEG 测得的枕叶 带功率的增加与结构和神经心理学测量相结合建立预测模型,能够在两年的随访中正确检测出 MCI 患者转化为阿尔兹海默症,敏感性为 100%,特异性为 94.7%。Maestu 等15在一项国际多中心研究中使用 MEG 脑功能

    21、连接(Functional Connectivity,FC)指标区分 MCI 患者与正常衰老者,并在两个训练模型中都得到较高的准确性。试验结果表明,最能区分 MCI 的特征是额顶叶和半球间 FC,同时在 MCI 患者中发现的超同步模式在 5 个不同的中心是稳定的,可以被认为是 MCI/老年痴呆症的可能临床前生物标志物15。2.2.3 抑郁症MEG 通过直接测量大脑磁场来反映大脑的生理学变化,具有较高时空分辨率,目前在研究抑郁症患者与健康人差异、探究抑郁症患者相关的神经激活模式等方面已取得一定成果。Han 等16对 31 名重度抑郁症患者和 19 名年龄匹配的健康人进行 MEG 检查,发现在 g

    22、o/no-go 任务下,抑郁症患者前辅助运动皮层在 Beta 和 Gamma 波段的能量值以及 Gamma 波段前辅助运动区与右侧额下回的功能连接值都明显低于健康人。Lu 等17招募 20 名重度抑郁症患者和 20 名健康人进行情绪面孔识别任务下 MEG 检查,研究发现,与健康人相比,抑郁症患者杏仁核与背外侧前额叶之间的效能连接明显降低,而杏仁核与前扣带回之间的效能连接显著增强。在抑郁症患者疗效预测方面,Ward等18通过扫描重度抑郁症患者静息态 MEG 发现,基线水平 Theta 波段额叶平均一致性的增强与电休克治疗对老年抑郁症患者的早期疗效存在关联。2.3 其他生物磁场成像应用量子磁场测量

    23、技术除了可用于心磁图、脑磁图,还可用于肺磁图、肌磁图等。肺磁图主要用于检测人体肺部的外界废尘的沉积量,为某些职业病的鉴定提供医学技术支持;肌磁图用于判断人体肌肉受伤情况,对于职业运动员具有重要意义19-20。17|信息通信技术与政策3 心磁图仪与脑磁图仪产业发展趋势3.1 产业现状3.1.1 心磁图仪从 1962 年 Baule 与 McFee 首次成功利用磁场梯度仪记录人体心脏磁场开始,心磁图仪经历了超导式心磁图仪和非超导式心磁图仪两个阶段。来源:心磁图仪,CCI心血管医生创新俱乐部图 2 超导式心磁图仪应用实例(1)超导式心磁图仪1970 年,Cohen 等21采用超导量子干涉仪装置实现了

    24、心脏磁场测量,引发科研院所和设备厂商使用不同类型和结构的超导量子干涉仪进行心磁图仪的研发。1991 年,德国 Siemens 推出了世界上首台商用化超导式心磁图仪,正式将此项技术推广到临床应用阶段。随后,美国、加拿大、德国、日本等均出现研发和生产超导式心磁图仪的厂家,如美国 CardioMag、4D Neuroimaging,德 国 BMP GmbH、SQUID AG,英 国Oxford Cardiomox,韩国 KRISS,以及芬兰 Neuromag等。传感器通道数也从早期的 4 通道发展至 9 通道甚至是 72 通道。同时,基于心磁图的心血管疾病临床研究也取得实质性进展。由于超导式心磁图仪

    25、需要搭配大型磁屏蔽房以屏蔽外界磁场噪声,且需要液氦制冷,因此其数千万元的高昂售价及每年数百万元的超导维护成本限制了超导式心磁图仪的发展和临床应用。目前,德国、日本、美国以及欧盟应用最广,世界范围内保有量长期保持在 400 台左右,增量有限。国内目前仅有数十台投入使用。为了降低成本,目前商用的超导式心磁图仪在实际应用中普遍不搭配屏蔽房,导致设备在采集心脏磁场的过程中容易被周边电磁环境干扰,诊断的准确率下降。而对于科研型医院和科研机构,配有屏蔽房的超导式心磁图仪仍然是研究者们热衷使用的仪器22。超导式心磁图仪应用示例如图 2所示。在超导式心磁图仪发展过程中,为了降低维护成本和使用难度,逐渐出现了使

    26、用高温超导技术的心磁图仪研发,但由于其探测灵敏度受到高温超导器件的限制,目前尚无成熟产品。在国内,漫迪医疗仪器(上海)有限公司基于中国科学院上海微系统与信息技术研究所的超导技术,于2019 年 5 月取得类医疗器械注册证,成为国内首家拥有自主知识产权 4 通道超导式心磁图仪的企业,目前正在研发 9 通道超导式心磁图仪。苏州卡迪默克医疗器械有限公司将英国牛津大学创新公司的心磁图仪在国内转化落地,于 2020 年 11 月取得类医疗器械注册证和生产资质。(2)非超导式心磁图仪心磁图的临床有效性已被证实,但超导式心磁图仪的种种不足驱动着科学家们不断探索新的技术以实现非超导条件下的心磁测量。2002

    27、年,美国普林斯顿大学在自然上公布了目前人类磁场测量灵敏度最高的基于量子磁场测量技术的零场原子磁力计23,并于 2015 年成功实现小型化和商用化,同时利用低成本的磁屏蔽装置屏蔽环境磁场,实现常温下高灵敏度心脏磁场测量,为心磁图仪大规模临床应用奠定了重要基础。目前,世界上仅有两家公司推出原子磁力计心磁图仪产品,分别是美国Genetesis 和我国北京未磁科技有限公司(见图 3、图4)。Genetesis 于 2017 年通过采购原子磁力计开始进行心磁图仪研发,推出全球首台基于原子磁力计的非27专题:量子信息技术2023 年第 7 期 来源:美国Genetesis公司 图 3 原子磁力计心磁图仪

    28、CardioFlux来源:动脉网图 4 原子磁力计心磁图仪 Miracle MCG、Miracle MCG Pro超导式 36 通道心磁图仪 CardioFlux,并通过云计算平台采用机器学习算法远程实现数据收集与处理,该产品于 2019 年获得美国 FDA 510K 认证,于 2020 年和2022 年两次获得 FDA 的 Breakthrough Imaging Device资质,并在包括 Cleveland Clinic 等著名诊所开展应用。目前,美国 Genetesis 已完成超过 2 500 万美元的 B 轮融资,其中包括来自日本 TDK 集团的战略投资。北京未磁科技有限公司是国内首

    29、家突破商用零场原子磁力计技术的公司,测量灵敏度达 fT 量级,推出的国内首台 36 通道原子磁力计心磁图仪 Miracle MCG 已于2022 年 4 月获得国内首张、世界第二张基于该技术的非超导无液氦心磁图仪医疗器械注册证,并在首都医科大学附属北京安贞医院/国家心血管疾病临床医学研究中心、中南大学湘雅医学院、广东省人民医院等使用。2023 年 5 月,北京未磁科技有限公司推出全球首创 64 通道无液氦心磁图仪 Miracle MCG Pro,突破高密度、多通道原子磁力计阵列串扰及控制难题,进一步提升心脏磁场成像空间分辨率,实现更精细化心脏功能性成像和病灶定位。此外,杭州极弱磁场国家重大科技

    30、基础设施研究院与杭州诺驰生命科学有限公司共同研发的原子磁力计心磁图仪于 2022 年 12 月获得类医疗器械注册证。同时,北京航空航天大学、浙江工业大学等高校及科研院所也相继开展原子磁力计心磁图仪研究,并取得一定的科研成果,但暂未见临床应用。3.1.2 脑磁图仪1968 年,美国物理学家科恩在磁屏蔽室内利用多匝感应线圈实现人类历史上第一次对脑磁信号的成功探测24。与心磁图仪相似,脑磁图仪的发展也包括超导式脑磁图仪和非超导式脑磁图仪两个过程。(1)超导式脑磁图仪1972 年,科恩采用 SQUID 技术,更加高效地探测到脑磁信号25,标志着现代脑磁图仪的开端。商业化超导式脑磁图仪从 20 世纪 8

    31、0 年代出现,并迅速成为多个科技强国的研究热点,技术水平也在不断发展进步,从最开始的单通道脑磁测量逐步发展成 200300通道覆盖全脑尺度范围的超导式脑磁图仪成熟系统。主要 研 发 及 生 产 企 业 有 澳 大 利 亚 Compumedics Neuroscan,芬兰 Elekta Neuromag、Croton Healthcare,美国 4D-Neuroimaging、Ricoh USA,加拿大 CTF,以及日本 Yokogawa 等。而基于超导式脑磁图仪的癫痫、阿尔兹海默症、抑郁症等脑疾病患者的临床研究也取得丰富的研究成果,公开报道的学术论文已达数千篇。在超导式脑磁图仪发展过程中,仍然

    32、遇到了和超导式心磁图仪类似的问题,例如每年低温液氦维护成本高达数百万元、大型磁屏蔽房造价昂贵、患者检查费用高昂等。虽然超导式脑磁图仪探测灵敏度可达 fT 量级,理论上能够采集到较为丰富的脑磁信号,但在实际应用中,传感器的超低温运行使其与头皮之间必须距离45 cm,使得脑磁信号在到达传感器时已被大幅衰减,从而损失了大量大脑神经活动信息。同时,由于SQUID 传感器被安置于庞大的杜瓦瓶中无法移动,使得患者必须在静止状态下完成脑磁检查,且配备的刚性头盔无法有效适配不同大小的头部,导致超导式脑磁图仪无法满足所有类型患者的临床检查需求,尤其儿童和青少年使用受到很大限制。基于上述原因,超37|信息通信技术

    33、与政策导式脑磁图仪没有得到大规模推广普及。目前,全球超导式脑磁图仪装机量约 200 余台,国内累计装机量仅 10 余台26,且采购成本达 2 000 万元以上,运行成本极高,需大量依赖美国进口的液氦,病人检测费用在1 万元/次左右,目前全国每年仅有几千名患者可以使用27。超导式脑磁图仪实际应用如图 5 所示。图 5 超导式脑磁图仪应用实例28(2)非超导式脑磁图仪为了打破超导式脑磁图仪在临床推广上的制约,科学家们开始探究可在室温下工作,探测灵敏度更高,且集成灵活性更高的新型脑磁探测技术。2017 年,英国诺丁汉大学 Sir Peter Mansfield 影像中心基于原子磁力计研发了世界上首台

    34、可穿戴式非超导式脑磁图仪,患者可以在扫描过程中移动,甚至喝水、颠乒乓球等29;并于 2021 年与 Magnetic Shields 公司合作设立 Cerca Magnetics 公司,推出新型原子磁力计脑磁图仪产品(见图 6)。该脑磁图仪产品可以更加靠近人体头部,可获取脑磁信号强度高于超导设备25 倍,并能够以毫米级和毫秒级时空分辨率大脑表面区域脑磁图。同时,原子磁力计脑磁图仪小巧轻便的特点使其可以被安装在可穿戴的头盔中,让人们在脑磁扫描过程中自由移动,无需像超导式脑磁图仪检查需要让患者长时间保持静止。此外,原子磁力计脑磁图仪头盔可以适应不同类型的头部形状和尺寸,不仅可以扫描成年人,也可以扫

    35、描儿童和婴儿。在使用成本方面,原子磁力计脑磁图仪要比超导式脑磁图仪成本更低,即使在原子磁力计应用早期,一个完整的原子磁力计脑磁图仪成像系统的价格仍然仅是超导式脑磁图仪的一半30。来源:英国Cerca Magnetics公司 图 6 非超导式脑磁图仪我国非超导式脑磁图仪的研究步伐也在不断加快。2018 年,中国科学院生物物理研究所研发了国内首台基于原子磁力计的多通道脑磁图系统原型机,成功获得脑磁信号;随后,北京昆迈医疗科技有限公司开发了基于量子传感技术的卧式非超导式脑磁图仪。2022 年,北京未磁科技有限公司基于全自主研发的零场原子磁力计技术,推出轻量化非超导式脑磁图仪,并作为项目牵头单位承担国

    36、家重点研发计划“新型无液氦脑磁图系统研发”项目,目前已和国内多家三甲医院及科研院所开展合作研究。3.2 产业发展趋势分析3.2.1 心磁图仪心磁图仪主要瞄准的是心血管疾病无创诊断、治疗后长期检测等领域,市场庞大。在我国,超过千万的冠心病患者以及每年超过百万的介入治疗患者都是心磁图仪的目标应用对象。相比于超导式心磁图仪的造价及维护成本高昂等问题,非超导式心磁图仪特别是新兴的原子磁力计心磁图仪由于其常温工作、无需维护及造价相对较低的特点,一经推出就受到市场的高度关注。客户群体包括各级医疗机构及数量庞大的体47专题:量子信息技术2023 年第 7 期检中心,市场潜力巨大。按照我国二、三级医院心内科的

    37、数量和冠心病检查需求估算,市场规模超千亿元。我国心磁图仪产业近年来呈现上升趋势,尤其是原子磁力计心磁图仪,目前已经出现技术和国外同级的公司,甚至在系统集成性、可靠性方面处于领跑水平。随着技术的成熟和临床应用的推广,预计未来我国心磁图仪市场将呈现良好的发展态势。3.2.2 脑磁图仪脑磁图仪可以广泛应用于癫痫、帕金森病、神经性精神病、脑梗死等脑疾病患者诊断、神经外科手术病灶定位以及高级脑功能研究等领域,也是人工智能、脑机接口研究的重要技术手段,未来将拥有巨大的市场发展空间。与传统的超导式脑磁图仪相比,原子磁力计脑磁图仪不仅能够提供更好的诊断性能,还可以降低设备购置成本 50%以上,降低运行成本两个

    38、数量级,使患者检测费用降低,极大地造福广大癫痫患者以及其他神经系统疾病患者。推进原子磁力计脑磁图仪产业化不仅将为提高我国居民健康水平作出重要贡献,其作为脑功能电生理旗舰设备还可带动整个神经电生理诊断/治疗的相关下游产业链。数据显示28-30,超过30%接受神经外科治疗的癫痫患者需要无创性脑成像,例如 MEG。根据 Coherent Market Insights 发布的最新数据31,2018 年全球脑磁图设备市场规模为2.533 亿美元,预计将以 4.5%的复合年增长率增长。同时,由于精神疾病发生率的上升,到 2026 年,全球脑磁图设备市场将超过 3.595 亿美元31。在国内,由于脑磁图仪

    39、开发成本较高,因此市场渗透率较低,未来还有巨大的增长空间。4 结束语量子磁场测量技术在生物磁场成像领域具有重要的应用价值,尤其是基于原子磁力计的心磁图仪和脑磁图仪在心脑血管等重大疾病诊断及临床应用的推广普及方面优势凸显,拥有巨大的发展潜力及庞大的市场空间。我国在量子磁场测量及心脑磁成像方面已具备一定的科研及产业化经验,但整体处于起步阶段,未来仍需不断推动技术提升及产业化落地,实现量子磁场测量技术的完全自主可控,大力推进心磁图仪、脑磁图仪高端医疗影像设备国产化,惠及我国广大民众。参考文献1 徐婧,唐川,杨况骏瑜.量子传感与测量领域国际发展态势分析J.世界科技研究与发展,2022,44(1):46

    40、-58.2 ALLRED J C,LYMAN R N,KORNACK T W,et al.High-sensitivity atomic magnetometer unaffected by spin-exchange relaxationJ.Physical Review Letters,2002,89(13):130801.3 DANG H B,MALOOF A C,ROMALIS M V.Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer J.App

    41、lied Physics Letters,2010,97(15):151110.4 CHAIKOVSKY L,KOHLER J,HEEKER T,et al.Detection of coronary artery disease in patients with normal or unspecifically changed ECG on the basis of MagnetocardiographyC/In Biomag 2000 Proceedings of the 12th International Conference on Biomaglletism.Helsinki:Uni

    42、versity of Technology,Espoo,2001:565-568.5 LI Y,CHE Z,QUAN W,et al.Diagnostic outcomes of magnetocardiography in patients with coronary artery disease J.International Journal of Clinical And Experimental Medicine,2015,8(2):2441-2446.6 ITO,YOKO,SHIGA,et al.Development of a magnetocardiography-based a

    43、lgorithm for discrimination between ventricular arrhyth-mias originating from the right ventricular outflow tract and those originating from the aortic sinus cusp:a pilot studyJ.Heart Rhythm,2014,11(9):1605-1612.7 KORHONEN P,MONTONEN J,ENDT P,et al.Magnetocardiographic intra-QRS fragmentation analys

    44、is in the identification of patients with sustained ventricular tachycardia after myocardial infarctionJ.Pacing Clin Electrophysiol,2001,24(8-1):1179-1186.8 KAWAKAMI S,TAKAKI H,HASHIMOTO S,et al.Magnetocardiography can disclose delayed left ventricular conduction and predict cardiac events in non-is

    45、chemic dilated cardio-myopathy patients with narrow QRSJ.Invasive Diagnostics,2019:774.9 华宁,唐发宽,布伦,等.心磁图对左心室肥厚诊断价值的初步探讨J.中国医疗设备,2009,24(4):9-10.10 WAKAI R T,STRASBURGER J F,LI Z,et al.57|信息通信技术与政策Magnetocardiographic rhythm patterns at initiation and termination of fetal supraventricular tachycardia

    46、 J.Circulation Journal,2003(107):307-312.11 CAMPBELL JQ,BEST TH,ESWARAN H,et al.Fetal and maternal magnetocardiography during flecainide therapy for supraventricular tachycardia J.Obstet Gynecol,2006,108(3-2):767-771.12 KNOWLTON RC,ELGAVISH R,HOWELL J,et al.Magnetic source imaging versus intracrania

    47、l electroencephalogram in epilepsy surgery:a prospective studyJ.Ann Neurol,2006,59(5):835-84213 OKA A,KUBOTA M,SAKAKIHARA Y,et al.A case of parietal lobe epilepsy with distinctive clinical and neuroradiological features J.Brain&Devolopment,1998,20(3):179-182.14 LOPEZ ME,TURRERO A,CUESTA P,et al.Sear

    48、ching for primary predictors of conversion from mild cognitive impairment to alzheimers disease:a multivariate follow-up studyJ.Journal of Alzheimers Disease,2016,52(1):133-143.15 MAESTU F,PEA JM,GARCES P,et al.A multicenter study of the early detection of synaptic dysfunction in mild cognitive impa

    49、irment using magnetoencephalography-derived functional connectivityJ.Neuroimage:Clinical,2015(9):103-109.16 HAN Y L,DAI Z P,RIDWAN M C,et al.Connectivity of the frontal cortical oscillatory dynamics underlying inhibitory control during a go/no-go task as a predictive biomarker in major depressionJ.F

    50、rontiers in Psychiatry,2020,11(707):1-12.17 LU Q,LI H,LUO G,et al.Impaired prefrontal-amygdala effective connectivity is responsible for the dysfunction of emotion process in major depressive disorder:a dynamic causal modeling study on MEGJ.Neuroscience Letters,2012,523(2):125-130.18 WARD M J,KARIM


    注意事项

    本文(量子磁场测量技术在生物磁场...像领域的应用现状与产业趋势_孙畅.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png