欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    Assimilation ...and Forecasts_Jincheng WANG.pdf

    • 资源ID:227759       资源大小:4.46MB        全文页数:18页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    VIP下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    特别提醒    |    会员权益      免费领取5元金币
    1、推荐 2345浏览器】、 【 WPS办公】、填表 下载求助】 、 【 索取发票】 、 【 退款申请 】 、咨询 微信客服】、【 QQ客服】、【客服电话:4008-655-100 | 投诉/维权电话:4009-655-100】。
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    Assimilation ...and Forecasts_Jincheng WANG.pdf

    1、Assimilation of Ocean Surface Wind Data by the HY-2B Satellitein GRAPES:Impacts on Analyses and ForecastsJincheng WANG1,2,Xingwei JIANG*3,4,Xueshun SHEN1,2,Youguang ZHANG3,4,Xiaomin WAN1,2,Wei HAN1,2,and Dan WANG1,21CMA Earth System Modeling and Prediction Center,China Meteorological Administration,

    2、Beijing 100081,China2National Meteorology Center,China Meteorological Administration,Beijing 100081,China3Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou),Guangzhou 511458,China4National Satellite Ocean Application Service,Beijing 100081,China(Received 25 October 2021;revised

    3、7 April 2022;accepted 6 May 2022)ABSTRACTThe ocean surface wind (OSW)data retrieved from microwave scatterometers have high spatial accuracy andrepresent the only wind data assimilated by global numerical models on the ocean surface,thus playing an important role inimproving the forecast skills of g

    4、lobal medium-range weather prediction models.To improve the forecast skills of theGlobal/Regional Assimilation and Prediction System Global Forecast System(GRAPES_GFS),the HY-2B OSW data isassimilated into the GRAPES_GFS four-dimensional variational assimilation(4DVAR)system.Then,the impacts of theH

    5、Y-2B OSW data assimilation on the analyses and forecasts of GRAPES_GFS are analyzed based on one-monthassimilation cycle experiments.The results show that after assimilating the HY-2B OSW data,the analysis errors of thewind fields in the lower-middle troposphere (1000600 hPa)of the tropics and the s

    6、outhern hemisphere (SH)aresignificantly reduced by an average rate of about 5%.The impacts of the HY-2B OSW data assimilation on the analysisfields of wind,geopotential height,and temperature are not solely limited to the boundary layer but also extend throughoutthe entire troposphere after about tw

    7、o days of cycling assimilation.Furthermore,assimilating the HY-2B OSW data cansignificantly improve the forecast skill of wind,geopotential height,and temperature in the troposphere of the tropics andSH.Key words:HY-2B,ocean surface wind,4DVAR,GRAPES-GFS,medium-range weather forecastCitation:Wang,J.

    8、C.,X.W.Jiang,X.S.Shen,Y.G.Zhang,X.M.Wan,W.Han,and D.Wang,2023:Assimilation ofocean surface wind data by the HY-2B satellite in GRAPES:Impacts on analyses and forecasts.Adv.Atmos.Sci.,40(1),4461,https:/doi.org/10.1007/s00376-022-1349-2.Article Highlights:The impacts of the HY-2B OSW data assimilation

    9、(in 4DVAR)on the global analysis fields are not limited to theboundary layer.The OSW data assimilation impacts on analysis can extend to the whole troposphere after about two days of cyclingassimilation and then remain stable.The OSW data provide a significant positive impact on the GRAPES_GFS forec

    10、ast skill in the troposphere of the tropicsand the southern hemisphere.1.IntroductionThe Global Data Assimilation System(GDAS)is oneof the core components of the global numerical weather pre-diction(NWP)system,which provides the initial conditionfor integrating an NWP model.Presently,two main catego

    11、riesof observational data can be assimilated into the GDAS,1)conventional observational data,including surface observa-tions,upper-air observations,aircraft-based observations,and ship observations,and 2)observations that are gatheredby remote sensing satellites,which are mainly comprised ofthe brig

    12、htness temperature data of the polar-orbiting and geo-stationary satellites,the refractivity data of the Global Naviga-tion Satellite System-Radio Occultation (GNSS-RO),andthe cloud-derived wind data retrieved from the polar-orbitingand geostationary satellites.The satellite observations effec-tivel

    13、y fill the shortage of conventional observational data*Corresponding author:Xingwei JIANGEmail:ADVANCES IN ATMOSPHERIC SCIENCES,VOL.40,JANUARY 2023,4461 Original Paper Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag GmbH Germany,part of Springer Nat

    14、ure 2023over the ocean and thus significantly improve the skill ofglobal numerical weather forecasts.Satellite observationsare playing an increasingly important role in promoting thedevelopment of todays NWP(Cardinali,2009).Despite a growing amount of satellite observations,themost collected variabl

    15、e by satellite observations is the bright-ness temperature(mass field).The number of wind(motionfield)observations is relatively lower over the ocean,withonly the atmospheric motion vectors(AMVs)data availablein cloud regions (Feng and Wang,2019).Becausegeostrophic balance between the motion field a

    16、nd the massfield is not satisfied in tropical regions,the existing dataassimilation algorithm is incapable of deriving the high preci-sion motion field from the observational data of the massfield,which limits the accuracy of the initial condition poten-tially leading to poor forecasting skill for t

    17、yphoon and otherdisastrous weather events in the tropics.To remedy the lackof wind observations over the ocean,the microwave scat-terometer was developed to observe the ocean surface wind(OSW)(Figa-Saldaa and Stoffelen,2000;Figa-Saldaa etal.,2002).Owing to the continuous improvement of theOSW retrie

    18、val algorithm,the accuracy of the OSW data isalso dramatically enhanced(Hersbach et al.,2007;Wang etal.,2015;De Kloe et al.,2017;Lin et al.,2017a;Wang etal.,2017).The main NWP operational centers across theworld have incorporated the assimilation of the OSW datainto operation,which greatly improved

    19、the forecast skills ofglobal NWP(Ayina et al.,2006;Candy and Keogh,2006;Hersbach,2010;Bi et al.,2011;Laloyaux et al.,2016;DeChiara et al.,2016,2017;Duan et al.,2017).The OSW dataassimilated in the GDAS is mainly collected by theadvanced scatterometer(ASCAT)onboard the Meteorologi-cal Operational Sat

    20、ellite-A/B and the quick scatterometer(QuickSCAT)and the Ku-band scatterometer mountedonboard the HY-2A satellite(HSCAT-A)(Bi et al.,2011;Jiang et al.,2012;De Chiara et al.,2016;Lin et al.,2017b).The HY-2B satellite is the second ocean dynamic envi-ronment monitoring satellite following the HY-2A sa

    21、tellite(Jiang et al.,2013).It was successfully launched on 25 Octo-ber 2018,equipped with a Ku-band rotating fan-beam scan-ning scatterometer (HSCAT-B).The HSCAT-B OSWretrieval algorithm is designed based on the mature retrievalalgorithm and quality control algorithm of the HY-2A scat-terometer(HSCA

    22、T-A)(Jiang and Lin,2009;Wang et al.,2015,2017;Lin et al.,2017a).The evaluation shows thatthe OSW of HSCAT-B is clearly more accurate than that ofHSCAT-A and has similar precision to that of ASCAT-A/B(Wang et al.,2020).Data retrieved from ASCAT-A and BOSW have displayed good accuracy when assessed wi

    23、th drop-windsonde and buoy winds(Chou et al.,2013;Lin et al.,2015).Many operational centers have assimilated ASCAT-A and B OSW data into global numerical weather predictionsystems operationally (e.g.,ECMWF,NCEP),and it hasmade a significant contribution to improving forecast skill(Bi et al.,2011;De

    24、Chiara et al.,2016;Lin et al.,2017b).These assessment results lay a solid foundation for theassimilation and application of HSCAT-B OSW in globalnumerical weather prediction.Meanwhile,compared withthe two small observational swaths(550 km)of ASCAT,the observational swath of HSCAT-B is as large as 18

    25、00 km,which covers 90%of the global ocean area.As a result,theamount of retrieved OSW data is more than 1.5 times thatof ASCAT given the same spatial resolution.So far,studies on the assimilation of the HSCAT-BOSW and its impact on the initial analysis and forecast ofNWP model are lacking.Therefore,

    26、to investigate the optimalscheme for the processing and assimilation of the HSCAT-B OSW data and improve the forecast performance of theGlobal/Regional Assimilation and Prediction System(GRAPES)over oceanic regions,this study designed and car-ried out a one-month HSCAT-B OSW data assimilation exper-

    27、iment based on the GRAPES global four-dimensional varia-tional assimilation system(4DVAR),and evaluated the influ-ence of the HSCAT-B OSW data on the forecast skills ofGRAPES Global Forecast System (GRAPES_GFS).Ourresults are expected to offer useful insight into applyingOSW data from the HSCAT-B an

    28、d the Chinese-FrenchOceanography Satellite in the future.The remainder of this paper is organized as follows.Sec-tion 2 discusses the assimilation system and experimentaldesign.Section 3 presents the assimilation data and theresults.Section 4 provides a discussion and conclusion.2.Assimilation syste

    29、m,HSCAT-B oceansurface wind,and experimental design2.1.GRAPES global four-dimensional variational dataassimilation systemThe GRAPES global four-dimensional variational dataassimilation system (GRAPES_GFS 4DVAR)adopts theincremental analysis update scheme (Zhang et al.,2019).Compared with the three-d

    30、imensional variational data assimi-lation system(3DVAR),the amount of observational datathat can be effectively ingested in the 4DVAR system isincreased by 50%;consequently,the analysis and forecasterror amplitude significantly decreases(Zhang et al.,2019).The assimilation window of GRAPES_GFS 4DVAR

    31、 is sixhours,and the observational time slot is 30 minutes,whichmeans the GRAPES_GFS 4DVAR can assimilate the observa-tional data with high temporal resolution.The assimilatedobservational data in this study include the conventionalobservational data and the satellite observational data,as sum-mariz

    32、ed in Table 1.The forecast model used in this study isGRAPES_GFS V3.0,which is currently operated at theChina Meteorological Administration with a horizontal reso-lution of 0.25 0.25 with 87 vertical layers.The mainphysical parameterization schemes in GRAPES_GFS V3.0are shown in Table 2.The long-and

    33、 short-wave radiationscheme is generated by the Rapid Radiative Transfer Model(RRTMG)(Morcrette et al.,2008).The land surface schemeused is the Common Land Model(CoLM)(Dai et al.,2003).JANUARY 2023WANG ET AL.45The planetary boundary layer scheme used is the Medium-Range Forecast(MRF)(Hong and Pan,19

    34、96).The deep andshallow cumulus convection parameterization scheme isgiven by the New Simplified ArakawaSchubert(NSAS)sub-routine(Arakawa and Schubert,1974;Pan and Wu,1995;Liu et al.,2015).The cloud physics schemes include a explic-itly prognostic cloud cover scheme(Ma et al.,2018)and theCMA double

    35、moment microphysics scheme,the macro-physics cloud condensation scheme,the impacts of detrain-ment of deep/shallow convection on grid-scale clouds to rep-resent the processes of formation and extinction for allhydrometeros.(Tan et al.,2013;Jiang et al.,2015;Chen etal.,2021).In the incremental 4DVAR,

    36、the numbers of verticallayers of inner and outer loops and the horizontal resolutionof the outer loop are the same as those in the GRAPES opera-tional model.The horizontal resolution of the inner loop is1.0 1.0.In GRAPES_GFS 4DVAR,the OSW data isdirectly assimilated as the 10 m neutral wind over the

    37、 oceansurface.The deblurred zonal wind component(u)and merid-ional wind component(v)products of HY-2B are also assimi-lated.2.2.HSCAT-B ocean surface windThe HSCAT-B OSW data retrieved by the National Satel-lite Ocean Application Service(NSOAS)is assimilated inthis study,with a horizontal resolution

    38、 of 25 km.The NWP-based ocean calibration (NOC)algorithm is used for theHSCAT-B OSW retrieval,which considers the influence ofsea surface temperature and exerts strict quality control(Ver-speek et al.,2012;Wang et al.,2015,2017;Lin et al.,2017a).The results show that the root mean square errors(RMSE

    39、s)of wind speed and wind direction of the HSCAT-B OSW data after strict quality control are 2.26 m s1 and16.6,respectively,evaluated against the buoy wind data.Table 1.Observations and variables assimilated in the control experiment(CTRL).Observation typeInstrumentPlatformAssimilated observation ele

    40、mentConventional observationTEMPWind,temperature,relative humiditySYNOPAir pressureSHIPAir pressureBUOYWindAIREPWind,temperatureSatellite observationAMSUANOAA-15,-18,-19,Metop-A,-BRadianceAMSUBNOAA-15,-18,-19,Metop-A,-BRadianceMWTS-2FY-3DRadianceATMSSoumi-NPPRadianceMWHS-2FY-3DRadianceMWRIFY-3DRadia

    41、nceHIRASFY-3DRadianceIASIMetop-A,-BRadianceAIRSAQUA(EOS-2)RadianceGIIRSFY-4ARadianceAGRIFY-4ARadianceS-VISSRFY-2HRadianceGNSS ROCOSMIC,Metop-A/B/C GRAS,GRACE-A,TerraSAR-X,FY-3D GNOSRefractivityGPS-PWAtmospheric column water vapor contentAMVsFY-2E,GOES-13,-15,METEOSAT-10,Himawaii-8Wind(u,v)Table 2.Pa

    42、rameterization schemes for physical processes used in GRAPES_GFS V3.0.Physical processParameterization SchemeReferenceLong-wave radiationRRTMG_SWMorcrette et al.,2008Short-wave radiationRRTMG_LWMorcrette et al.,2008Land surface processCoLMDai et al.,2003Planetary boundary layer processMRFHong and Pa

    43、n,1996Cumulus convection processNSASArakawa and Schubert,1974;Liu et al.,2015Cloud coverCMA cloud cover prognostic schemeMa et al.,2018Cloud microphysical processesCMA cloud scheme including the large-scalecondensation,double-moment microphysics,sub-grid scale convection detrainment pro-cessesTan et

    44、 al.,2013;Jiang et al.,2015;Chen et al.,202146HY-2B OSW DATA ASSIMILATION IN GRAPES_GFS 4DVARVOLUME 40The accuracy of the HSCAT-B OSW data is equivalent tothat of the ASCAT-B OSW data(Wang et al.,2020).2.3.Observational errorWith the wind data observed by oceanographic buoysas a reference,the RMSEs

    45、of u and v of the HSCAT-BOSW data are 1.70 m s1 and 1.76 m s1,and the biases are0.03 m s1 and 0.08 m s1,respectively(Wang et al.,2020).Although the bias of HSCAT-B is relatively small,previousresearch showed that the bias is quite sensitive to the actualwind speed.The bias of the HSCAT-B wind speed

    46、is particu-larly obvious when the wind speed becomes larger than20 m s1(Wang et al.,2020).However,there is no bias correc-tion procedure especially for the OSW data inGRAPES_GFS.To mitigate the potential influence of thebias,the observational error should be appropriatelyenlarged.In addition,the spa

    47、tial resolution of the u and v com-ponents of the OSW retrieval is set at 25 km,which isslightly finer than that of GRAPES_GFS.In general,the cor-relation between the observational errors of adjacent gridswithin the current resolution of 25 km should be considered.Previous studies also demonstrated

    48、that the spatial correlationof ASCAT-B observational errors approaches zero when thegrid interval is beyond 50 km (Valkonen et al.,2017).Nonetheless,in GRAPES_GFS 4DVAR assimilation sys-tem,the correlation between observational errors of adjacentgrids is not considered in the observational error cov

    49、ariancematrix due to computational cost.Therefore,we process theHSCAT-B OSW observations with the thinning step andenlarge the observational errors in the assimilation systemto 2 m s1 for the u and v wind components.2.4.Quality controlThere are strict quality controls in the retrieval processof the

    50、HSCAT-B OSW (Lin et al.,2017a;Wang et al.,2020).The quality control algorithm for the HSCAT-BOSW L2b products is used to eliminate the data over theareas covered with sea ice and those polluted by precipitationbefore the GRAPES_GFS 4DVAR assimilation.The qualityof observations is controlled by compa


    注意事项

    本文(Assimilation ...and Forecasts_Jincheng WANG.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 服务填表 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-2024(办理中)    



    关注我们 :gzh.png  weibo.png  LOFTER.png