欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    程控滤波器设计方案比较分析.doc

    • 资源ID:1509807       资源大小:850.50KB        全文页数:54页
    • 资源格式: DOC        下载积分:5金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    开通VIP
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    程控滤波器设计方案比较分析.doc

    1、精选资料1 程控滤波器设计方案比较分析11 滤波器的设计方案1:传统分立元件组成的无源滤波器存在诸如带内不平坦、频带范围窄且恒定、结构复杂等缺点。方案2:运算放大器构成的有源滤波器设计简单,但存在截止频率调节范围的局限性,难以实现高精度截止频率调节。方案3:引脚可编程的开关电容滤波器MAX264。该器件内部集成了滤波器所需的电阻、电容,无需外接器件,且其中心频率、Q值及工作模式都可通过引脚编程设置进行控制。MAX264可工作于带通、低通、高通、带陷或是全通模式下,其通带截止频率可达140 kHz。综上所述,故系统的滤波器设计选用方案3。12 放大器的设计方案1:采用普通宽带运算放大器构成放大电

    2、路,分立元件构成AGC控制电路,利用包络检波反馈至放大器的方法控制放大倍数。采用场效应管作为AGC控制可实现高频率和低噪声,但温度、电源等漂移将引起分压比变化,采用这种设计方案难以实现系统增益的精确控制和稳定性。方案2:采用可编程放大器的思想,将交流输入信号作为高速DA转换器的基准电压,该DA转换器可视为一个程控衰减器。理论上讲,只要DA转换器的速度够快、精度够高就可实现宽范围的精密增益调节。但控制的数字量和最后的增益(dB)不是线性关系而是指数关系,导致增益调节不均匀,精度降低。方案3:采用控制电压与增益成线性关系的可编程增益放大器PGA实现增益控制。电压控制增益便于单片机控制,同时可减少噪

    3、声和干扰。采用可变增益放大器AD603作为增益控制。AD603是一款低噪声、精密控制的可变增益放大器,温度稳定性高,其增益与控制电压成线性关系,因此便于使用DA转换器输出电压控制放大器增益。综上所述,故系统的放大器设计选用方案3。 2 程控滤波器设计程控滤波器主要由程控放大器、滤波器和信号采集等模块组成,如图1所示。幅频特性测试仪主要由扫频源、信号采集、示波器显示等电路组成。其工作原理:输入信号经衰减网络衰减至10 mV,单片机设置放大器和滤波器的参数,选择相应的滤波器,单片机和FPGA控制AD9851产生正弦输出信号,再经滤波、AGC后得到扫频输出信号,单片机和FPGA共同控制DA转换器输出

    4、幅频特性曲线在示波器上显示。3 理论分析与计算31 程控放大器AD603的基本增益为:Gain(dB):40VG+10 (1)其中,VG是差分输入电压,单位是V,Gain是AD603的基本增益,单位是dB。由式1看出,以dB作单位的对数增益与电压成线性关系。由此,单片机通过简单的线性计算就可控制对数增益,从而准确实现增益步进。32 程控滤波器编程设置MAX264的M0、M1引脚使其工作在模式1、2、3、4多种模式下,但只有模式3具有高通滤波功能,因而本系统设计采用模式3实现低通和高通滤波功能。模式3下的输入时钟与中心频率的关系(以下仅以低通滤波器作为分析,高通滤波器类似)为:fCLK/f0=(

    5、N+13)(2)其中,fCLK为输入时钟频率,fo为滤波器中心频率,N由外部输入。fo与截止频率fc的关系: 其中,Q为滤波器的品质因数。因此fCLK与fc具有函数关系,可通过设置fCLK实现fc的设置。取Q=0707 fCLK/f=(N+13),实现fc的设置。33 椭圆低通滤波器椭圆函数滤波器的衰减特性为:AdB=101g1+2Z2n()(4)其中,由波纹确定,Zn()为n阶的椭圆函数,对于偶数n阶的椭圆函数,其极点和零点表示为:其中,m=n2。所以对于4阶的椭圆函数滤波器,阻带和通带内波纹相等,而且阻带内的陷波点数为1。因此椭圆滤波器在通带和阻带内特性允许起伏,并具有最佳截止特性,但对元

    6、件数值要求特别严格。根据选用RdB=05 dB,Amin=70 dB,s=391查归一化图表得C1=1226 F,C2=0043 80 F,L2=1241 H,C3=1904 F,L4=0845 9 H,用Z=510 和频率标定系数FSFT=2fc(fc截止频率,即50 kHz)对滤波器去归一化,C=C(FSFZ),L=LZFSF,得出参数后采用Multisim仿真调整参数,并且设计相关电路测试得出如下参数:C1=68 nF,C2=39 pF,L2=22 mH+220H=242 mH,C3=10 nF,L4=1 mH+620 mH=162 mH。其椭圆滤波器电路如图2所示。4 硬件电路设计41

    7、 程控放大电路该电路采用两片AD603级联实现可控增益范围为0 dB60 dB。AD603单片增益范围为10 dB30 dB,输入控制电压范围为0 Vl 1。其中,一级AD603电路图如图3所示。由于AD603的输入阻抗仅100 ,要满足系统电阻要求,必须增加输入缓冲来提高输入阻抗。另外由于前级电路影响电路噪声,须尽量减少噪声,故采用一级仪表运算放大器AD620构成的放大电路作为前级小信号放大器。42 低通和高通滤波器电路系统设计采用引脚可编程滤波器MAX264实现低通或高通滤波器,如图4所示(衰减放大网络略)。电路设计采用单极性输入模式,其输入电压范围0 V5 V,调理电路应将信号调理至其输

    8、入范围。调理过程:信号首先经过衰减网络使其峰-峰值为-25 V+25 V,再由加法器将信号调节为0 V5 V,滤波后,减法器将信号变为-25 V+25 V,放大网络补偿平衡衰减,最后输出至有效值来转换电路。43 幅频特性测试电路幅频特性测试电路主要是由DDS AD9851与AGC构成的扫频源、有效值转换,以及12-bit ADCMAXl97采样电路和DAC0800构成的显示电路组成。5 系统软件设计系统软件设计采用软件工程设计思想,主要实现人机界面的交互,包括提示信息显示、系统状态选择、参数输入、输入参数显示、系统启动与复位。软件设计系统程序流程图如图5所示。6 测试结果系统设置为放大器电压增

    9、益范围测试模式,在放大器电压增益测试端口利用Tektronix TDS1002型数字示波器观察其输出信号在不失真的情况下,测量其输出幅度,满足系统要求。系统分别设定为低通滤波器和高通滤波器测试模式,在放大器电压增益测试端口以及滤波器输出端口中利用TektronixTDS1002型数字示波器观察其输出信号在不失真的情况下,测量截止频率处及2倍截止频率处其输出幅度,各参数满足系统要求。系统设定为椭圆滤波器测试模式,在滤波器输入端口和滤波器输出端口采用数字示波器观察其输出信号在不失真的情况下,测量其通带内和截止频率处输出幅度。滤波器输入幅值为1 V时通带内最大输出幅值为110 V,增益为0828 d

    10、B,满足带内起伏1 dB的要求。-3 dB截止频率为52 kHz,满足-3 dB通带误差不大于5%的要求。用管脚可编程滤波器件MAX264设计通用有源滤波器The Design of Universal Filter with Pin Programmable Filter MAX264国防科技大学 张成鹤 王平 郑林华引 言 软件无线电技术目前已被广泛采用,具有软件无线电结构及其功能的系统是一个高度数字化,高度可编程,用软件实现并可扩充其功能的一种通信系统,它的中心思想就是构建一个通用化的硬件平台,根据不同要求,只需升级或改变控制程序就可完成多种功能。而滤波器作为抑制或消除无用信号成分通过有

    11、用信号成分的电子装置,已大量应用于各类电路系统中,传统的分立元件组成的无源滤波器或是用运放构成的有源滤波器总是存在诸如带内不够平坦、频带范围窄且固定不变、结构复杂等缺点。随着软件无线电技术在电路系统设计中的广泛应用,寻找一种高精度可编程控制的通用滤波器已变的越来越重要。MAX364就能较好地满足这一需要。MAX264的结构及性能 MAX264的结构 MAX264的结构主要由两个独立的滤波单元、分频单元、fo逻辑单元、Q逻辑单元及模式设置单元等电路组成。主要特性描述如下: 滤波器设计软件化 中心频率32阶可控 Q值128阶可控 Q值与fo独立可编程 Fo可达140kHz 支持+5V和 5V两种供

    12、电方式 MAX264的引脚说明 MAX264芯片诸引脚功能如下(括号内数字为引脚号): V+(10):供电正极,并接旁路电容尽量靠近该脚; V-(18): 供电负极,并接旁路电容尽量靠近该脚; GND(19):模拟地; CLKA(13):A单元时钟输入,该时钟在芯片内部被二分频; CLKB(14):B单元时钟输入,该时钟在芯片内部被二分频; OSC OUT(20):连至晶体,组成晶振电路(若接时钟信号时,该脚不连); INA,INB(5,1):滤波器输入; BPA,BPB(3,27):带通输出; LPA,LPB(2,28):低通输出; HPA,HPB(4,26):高通/带陷/全通输出; M0,

    13、M1(8,7):模式选择,+5V高,-5V低; F0-F4(24,17,23,12,11):时钟与中心频率比值(FCLK/f0)编程端; Q0-Q6(15,16,21,22,25,6,9):Q编程端。 MAX264原理及设计 对M0、M1两个管脚编程可使芯片工作于模式1、2、3、4几种方式,对应的功能如表1所示,时钟与中心频率比值与编码对应。 模式1:当我们要实现全极点低通或带通滤波器(如:切比雪夫、巴特沃斯滤波器)时这种模式是很有用的,有时该模式也用来实现带陷滤波器,但由于相关零极点位置固定,使得用作带陷时受到限制。 模式2:模式2用于实现全极点低通和带通滤波器,与模式1相比该模式的优点就是

    14、提高了Q值而降低了输出噪声,该模式下fclk/fo是模式1的1oversqrt2,这样就延宽了截止频率。 模式3:只有该模式下可实现高通滤波器,该模式下最高时钟频率低于模式1. 模式4: 只有该模式下才可以实现全通滤波器。 在设计中,首先根据所需的频率响应特性,确定出品质因数(Q)及截止频率,由Q值进而确定出N值: Q=64/(128-N) 模式1,3,4时; Q=90.51/(128-N) 模式2时; 也可以由Q值查表3得出N.得到N后,进而可以求出fclk/fo值: fclk/fo= (N+13) 模式1,3,4时; fclk/fo= (N+13)/sqrt2模式2时; 因为时钟频率fcl

    15、k是已知的,所以即可求出fo。由低通、带通、高通时通带示意图,几种情形下的参数对应式如下: 低通时: f_c=f_0 sqrt(1-1over2Q2)+sqrt(1-1over2Q2)2+1 Q0-Q6(15,16,21,22,25,6,9):Q编程端; f_p=f_o sqrt1-1over2Q H_op=H_olp 1over1overQsqrt(1-1over4Q2) 带通时 Q=f_0over(f_H-f_L),f_0=sqrtf_Lf_H f_L=f_0-1over2Q+sqrt1over4Q2+1 f_H=f_01over2Q+sqrt(1over2Q)2+1 高通时 f_c=f_

    16、0 sqrt(1-1over2Q2)+sqrt(1-1over2Q2)+1-1 f_P=f_0 sqrt1-1over2Q2-1 H_op=H_OHP 1over1overQsqrt1-1over4Q2 实现通用滤波器 随着软件无线电思想在电路系统设计中广泛应用,原来的那种固定频带和固定模式的滤波器已不能满足需要,以下就是我们在实际工程中实现的一种由DSP控制下,以MAX264为核心的通用有源滤波器如我们采用了 5V供电,为了获得更好的带内特性,将LPA,BPA,HPA经过受DSP控制的模拟开关MAX333接至INB管脚,以实现级联滤波,当然也可以由软件控制MAX333为关断方式而使其为单级方

    17、式,由于DSP输出为3V标准,而MAX333,MAX312,MAX4624为5V标准,在实际工程应用中,为保证器件安全,MAX333到DSP间接有电平转换芯片(因与滤波器关系不大,故未画出),另外DSP与MAX333,MAX312及MAX4624间的锁存器件也未画出。M0和M1的高电平为+5V而其低电平为-5V,所以模式的选择是由DSP控制模拟开关MAX312来实现的。应用MAX264设计程控滤波器滤波器, 程控, 应用, 设计一、引言 该题目为我院电子技术应用研究课题,该课题在评审中获得一等奖。二、方案选择1.可调增益放大器部分 选用集成运放构成比例运算电路,这里对运放的增益带宽积有一定的要

    18、求。根据增益带宽积为常数的原理,可先确定单位增益带宽,选择出运放。再根据增益的步进值定出各个反馈电阻的值,利用模拟开关选通各个电阻,从而实现增益的步进可调。2.程控滤波器部分 采用集成芯片MAX264构成滤波器。这种滤波器可通过选择工作模式实现低通、高通、带通三种滤波方式。其低通、高通截止频率可通过编程设置,低通截止频率可高达140kHz,但这种滤波器需要根据参数确定时钟频率,且传输函数较为烦琐,可通过编软件进行模拟实现。该集成器件有些引脚需要正负5伏供电,所以需要电平转换电路。本系统软件编程较为简单,硬件不太复杂。三、系统设计系统结构如图1所示。四、理论分析与计算1.放大器增益 放大器部分采

    19、用AD620、模拟开关和精密可调电阻构成 根据公式: Rg=49.4K/(G-1) 即: G=49.4K/Rg+1 用单片机控制模拟开关的三个输入端以控制所选择的电阻从而达到 10db60db增益可调的目的,且精度较高。2.滤波器的截止频率 MAX264 内集成了设计滤波器所需的电阻电容,在应用中几乎不用外接器件,使用非常简单,其中心频率、Q值及工作模式都可以通过对引脚编程控制,它可以工作于带通、低通、高通、带阻或是全通模式,时钟输入(外接时钟信号或晶振)和5比特编码控制可以精确地设置中心频率及Q值(0.564)。通过减小fclk/f比值,可使其通带截止频率达140kHz。 五、理论分析与计算

    20、1.放大器增益 放大器部分采用AD620、模拟开关和精密可调电阻构成。 根据公式: Rg=49.4K/(G-1) 即: G=49.4K/Rg+1 用单片机控制模拟开关的三个输入端以控制所选择的电阻从而达到 10dB60dB增益可调的目的,且精度较高。2.滤波器的截止频率 MAX264 内集成了设计滤波器所需的电阻电容,在应用中几乎不用外接器件,使用非常简单,其中心频率、Q值及工作模式都可以通过对引脚编程控制,它可以工作于带通、低通、高通、带阻或是全通模式,时钟输入(外接时钟信号或晶振)和5比特编码控制可以精确地设置中心频率及Q值(0.564)。通过减小fclk/f比值,可使其通带截止频率达14

    21、0kHz。 低通滤波模式下由MUX264资料给出: 由上述四个独立变量fc、fclk、N、Q的关系式可知,只要fc、fclk、N、Q确定,则截止频率fc即可确定,所以要满足在1kHz20kHz范围内可以步进1kHz的要求,即可通过改变MAX264的输入时钟频率fclk,编程设置Q端和F端来实现。但参数的不同选择要影响到系统中硬件与软件所占比例,其中fclk的变化要由时钟频率变换电路实现, 用单片机控制N、F,同时还需要逻辑电平转换电路。在参数的选择中,尽量发挥软件的灵活性,使硬件电路容易实现。依据公式,借助计算机计算得到满足要求的各组理论解,我们选择两个时钟输入频率提供给MAX264,再选择N

    22、、F来实现截止频率fc在1kHz20kHz范围内步进1kHz的要求,低通,高通参数选择值列表(见表3、表4)。3.f=2fc处总增益理论计算 经查MAX264的使用说明,其内部两个独立滤波电路都为二阶,且在其通带内的滤波信号放大增益为0dB,故在放大器增益为40 dB时,f=2fc处总增益为: 低通滤波时: G=40 dB -3 dB -40 (dB/dec)*(2/10)=29 dB 所以理论计算满足设计要求。 高通滤波时: G=40 dB -3 dB40 (dB/dec)*(2/10)=29 dB 所以理论计算满足设计要求。六、单元电路及程序设计1.放大器 本放大器采用集成运放AD620

    23、,见图2。2.程控滤波器 MAX264可以不加外部元件或加少量外部元件就可以实现低通、高通、带通、陷波器, 该芯片的引脚分布见图3。 利用MAXIM 公司生产的CMOS开关电容滤波器MAX264设计的锁相跟踪带通滤波器, 电路简单,工作可靠,具有很高的实用价值。MAX264内部含有2 个独立的二阶开关电容带通滤波器,它有12个可编程输入端,其中5个用来设置滤波器中心频率,另外7个用来设置滤波器的品质因数Q ,因此,不需要外加任何元件,仅需要外部时钟就可以实现带通滤波功能,使用极为方便。对M0、M1两个引脚编程可使芯片工作于模式1、2、3、4几种方式。 模式1:当实现全极点低通或带通滤波器(如:

    24、切比雪夫、巴特沃斯滤波器)时这种模式是很有用的,有时该模式也用来实现带阻滤波器,但由于相关零极点位置固定,使得用作带阻时受到限制。 模式3:只有该模式下可实现高通滤波器,该模式下最高时钟频率低于模式1。MAX264与单片机接口电路如图4所示。图4 单片机接口电路3.程序设计流程图程序流程如图5所示。七、测试方案与结果分析1.测试条件 示波器:YUANLONG oscilloscope VD422M 40MHz. 函数信号发生器:SNING su3015 DDS 15MHz. 直流稳压电源:金盾 JWY30G. 万用表:VICTOR vc890c+.2.测试方案 首先针对放大模块,当输入低频和高

    25、频信号时测量放大后的电压值和上下限截止频率,计算放大器增益与通频带是否符合题目要求;然后将每一级放大后的信号送入滤波器,分别设置为低通和高通模式,在截止频率1kHz20kHz可调的范围内分别测试其总的电压增益和实际截止频率。3.放大模块测试 输入电压:10mv,当输入低频信号,信号放大倍数AU与下限频率Fl的关系测量值如表1:可修改编辑原文已完。下文为附加论文,如不需要,下载后可以编辑删除,谢谢! 轰燃对建筑室内火灾灭火救援的影响【摘 要】:在室内轰燃研究理论基础上,简要介绍了轰燃的定义和轰燃判据,并结合建筑火灾实际情况,分析了因轰燃引起的室内火灾中灭火救援难点问题,根据轰燃的特点,提出了应对

    26、此类火灾的灭火救援对策,为消防部队处置室内轰燃火灾提供参考。【关键词】:消防; 建筑火灾; 轰燃; 灭火救援一、引 言轰燃是室内火灾发展过程中的一种特殊燃烧现象。室内发生火灾后,若具备合适的燃料和通风条件,就可能发生轰燃。轰燃一旦发生,室内所有可燃物会在极短时间内同时全面着火,室内整个空间都充满火焰,可燃物燃烧速率和室内温度急剧上升,并且室内会产生大量有毒烟气,氧气浓度也随之急剧下降。这些都会使室内人员受到严重威胁,也给消防灭火救援带来极大困难。国内外发生的很多建筑火灾事故中,轰燃就是造成严重人员伤亡和财产损失的元凶,如新疆克拉玛依友谊馆火灾、洛阳东都商厦火灾、吉林中百商厦火灾、英国布拉德福市

    27、足球场火灾和皇家十字地铁车站火灾。因此,结合轰燃的特点和危害性,分析轰燃对建筑火灾中灭火救援工作造成的难点问题,有针对性的加强对室内火灾的控制,对于提高消防部队灭火救援工作效率具有重要意义。二、轰燃及相关研究(一)轰燃定义NFPA 921中轰燃定义为:室内火灾发展的一个过渡阶段,热辐射作用下的所有可燃物在轰燃时几乎同时着火,火焰迅速在室内所有物体传播蔓延,室内形成一片火海。轰燃的发生是火灾失控发展的危险信号,产生的高温烟气会对建筑结构安全产生严重影响,强大的破坏力往往造成恶性死伤事故和巨大财产损失,极易造成群死群伤事故与巨额财产损失,也是火灾即将向临近区域蔓延的重要标志。目前对轰燃还没有统一的

    28、定义,比较常用的三种:(1)室内火灾由局部火向大火的转变,转变完成后,室内所有可燃物表面都开始燃烧;(2)室内燃烧由燃料控制向通风控制的转变;(3)在室内顶棚下方积聚的未燃气体或蒸气突然着火而造成火焰迅速扩展。(二)轰燃判据及预测室内火灾是一种受限空间内的燃烧,是建筑火灾的主要形式,将发生轰燃的条件量化为可以测量或计算的物理量是一件极为困难的事情。现在应用最多的三个轰燃判据为:(1)室内接近顶棚热烟气温度超过600;(2)室内地板平面辐射热通量超过20 kW/m2;(3)通风口有火焰喷出。以上判据都源于火灾实验观察结果,虽然具有一定局限性,但可以作为判定轰燃的参考标准。对轰燃的预测方法,不同的

    29、研究者提出了不同的温度和热通量判据。V.Barauskas、McCaffrey、Quintiere、Harkleroad、Thomas等分别提出了基于热释放速率预测轰燃的经验公式。此外,武警学院陈爱平教授将内衬材料的热惯性因素引入考虑,基于McCaffrey的方法提出了轰燃综合预测法;B.Hagglund等建议采用临界轰燃燃烧速率预测轰燃;J.G. Quintiere等提出采用临界轰燃燃料面积预测轰燃;S.R.Bishop根据经典热爆炸和非线性热动力学理论温度微分方程特征值预测轰燃等。这些预测方法的实用性和精确性还有待改进。三、轰燃对室内火灾灭火救援的影响(一)轰燃时间预测困难,影响灭火救援决

    30、策消防部队在轰燃前到达现场,如果未及时预测和侦察到轰燃,急剧升高的温度和喷出火焰会对消防队员造成伤害。消防官兵到火场后,没有人能够准确预测是否会发生轰燃和什么时候发生轰燃。有些火灾,消防员内攻进入室内的瞬间就可能被卷入火海中,而有些火灾,在灭火救援进行过程中突然轰燃,也有的至灭火战斗结束也不发生轰燃。如何在火场快速判断轰燃发生的可能性及时间,仍是一线消防指挥员的一个难题。而目前对轰燃的预测研究多限于学术理论方面,并没有便于在灭火救援现场操作的轰燃预测仪器或技术手段。指挥员只能依靠个人积累的灭火经验,对轰燃的感官印象及火情侦查情况进行初略判断,容易导致现场决策低效率、低质量,甚至做出错误的决策,

    31、造成不必要的人员伤亡和财产损失。(二)火场温度高,灭火进攻困难室内发生轰燃后,火势突然猛涨,进入全面燃烧阶段,产生的高温能达到1000左右。有关研究表明,对于没有任何保护的皮肤,只要暴露在137-160的环境中就会造成严重伤害。扑救建筑火灾最有效的灭火措施是内攻,而轰燃产生如此的高温会对消防员产生强烈的烘烤,加上可能从门窗喷出的火焰和高温烟气,消防队员很难近距离灭火,内攻更加危险、艰难。如灭火中水枪掩护不充分,个人防护不周全,还会危及消防员人身安全。同时由于轰燃中可燃物不完全燃烧会产生大量有毒浓烟和气体,降低了火场能见度,更加难以发现较隐蔽的火势威胁,影响了灭火效率。(三)室内充满烟气,搜索救

    32、援难度大轰燃发生前,大量积聚的浓烟和高温会迫使消防员将身子放低,弯腰或匍匐前进,在搜索被困人员时行动不便,效率低下。此外,室内积聚的浓烟具有较强的减光性,室内能见度很低,对侦查和搜救非常不利,受困人员也无法自行安全疏散,消防员也有误入危险区域和迷路的危险。轰燃后转为全面燃烧,燃烧更为猛烈,无法深入开展室内救援,而由于燃烧速率急剧增长,因燃料不充分燃烧会产生大量有毒气体如:CO、H2S、HCL、SO2等,导致被困人员中毒、窒息,消防灭火救援时间更加紧迫,人员疏散更加困难。(四)建筑受高温烘烤,结构有倒塌危险室内轰燃发生后,释热速率急剧增大,温度急剧升高,达到500-600的高温,最高可达1000

    33、左右,建筑构件的强度在高温、强烈热辐射作用下会下降。混凝土在高于300温度作用下抗压强度线性下降,超过600时抗拉强度基本丧失,在900左右时抗压强度下降到常温时的10%;钢结构虽不燃烧,但在火灾高温中强度会迅速下降,500左右时全负荷钢结构就会失去静态平衡稳定性,600其强度下降2/3,进而结构发生变形引发倒塌。因此轰燃扑救过程中,建筑结构很容易发生局部倒塌甚至整体坍塌,使室内人员受到威胁,影响消防救援工作。(五)火焰易窜出蔓延,控制火势难度大室内具备轰燃条件时,可能在着火3-10 min后就会发生轰燃,消防队赶赴火场后可能已经发生轰燃,火灾发展至猛烈燃烧阶段,第一出动力量如对火灾形势估计不

    34、足,到达火场后往往控制不住逐渐增长蔓延的火势。此外,轰燃后伴随着喷出火焰和飞火,能冲出着火房间,造成火势蔓延。而且轰燃产生的强烈辐射热也对临近可燃物形成威胁,强辐射热也是火势向上层和四周扩散蔓延的主要原因。四、预防和控制轰燃的灭火救援对策(一)全面侦查火情,注意轰燃征兆在处置建筑室内火灾时,应全面侦查火情,快速掌握起火房间位置、火势大小、人员被困情况、室内可燃物数量与类别、建筑结构特点、周围毗邻建筑情况等,尤其对于通风不好且室内可燃物数量较多时,应提高警惕,密切监视,谨防轰燃突发造成恶性事故。为延缓或避免可能发生的轰燃,到场后应确保室内自动喷水灭火系统动作,尽量为后续灭火与人员疏散救援争取时间

    35、。同时应派安全员密切注意轰燃发生征兆,轰燃的警报信号主要是高温辐射、“闪燃”和“白烟”。有条件进入室内侦查时,如发现室内烟气温度较低,则轰燃可能性不大,应及时出开花水冷却;如消防员进入后,明显受到高温烘烤,热烟气层不断变厚,表明有轰燃危险,应及时撤离至外围控制火势。同时,消防员进入室内时,还应密切关注是否有浓烟从门窗翻滚、溢出,或则浓烟中夹杂有较小火焰和闪燃现象,如果出现这些征兆,则说明此房间具有轰燃的危险。(二)准确迅速,疏散抢救人员轰燃具有一定突发危险性,消防部队到达火场后,人员抢救时间非常有限,在迅速掌握火情和人员被困情况后,积极做好冷却防护同时,立即组织精干人员成立搜救小分队,展开人员

    36、疏散和救援。进入室内救援前,应根据人员被困位置和数量,确定好各小组任务,定好一次作业时间、紧急情况联络方式和撤离路线。每个搜救人员都应穿好灭火服,必要时穿防火服,佩戴空气呼吸器,在水枪跟进掩护中小心进入。搜索时2人或3人一小组,协同搜寻,尽量靠墙前进,弯腰或则匍匐行进,能见度太低时要利用导向绳保护,防止在浓烟中迷路,并密切注意火情变化,随时做好紧急撤离准备。在搜救中注意检查门窗附近有无昏迷人员,当室内烟气温度过高时,不能进入火场内部太远,严格按照作业时间行动,按时返回。如果赶到火场轰燃已经发生,不要盲目进入室内,应先设法进行通风散热,控制火势,适当破拆开辟救人通道,待火势稍减再内攻灭火救援。(

    37、三)喷雾冷却稀释,适时通风散热轰燃前和轰燃后都要出枪射水,如能直接对火源射水,可有效降低火源热释放速率,降低火焰区温度,能延迟或抑制轰燃发生。但区别于普通建筑火灾,轰燃火灾处置中水枪的射流形式、射水部位都有特殊要求。对于轰燃火灾,室内烟气层很厚,可燃气体浓度大,如果仅用直流水冷却灭火,可以对火焰区起到降温作用,对未燃材料起到润湿和减缓热分解作用,但对热烟气层效果不明显,所以射水直击火源的同时还需要开花水或喷雾水对热烟气层实施稀释、冷却。向热烟气层喷水雾一方面可以降低烟气温度,减小热烟气的热辐射,另一方面水雾滴吸热汽化后可以稀释可燃气浓度。现在大多室内顶部有易燃装修材料,还要注意向屋顶和墙壁射水

    38、冷却。扑救轰燃火灾时,还要注意适时通风和排烟,李晋等研究发现在增大房间送风量,轰燃时间提前,稳定送风量并加大排烟量时,轰燃不发生。杜兰萍等研究表明,燃料一定时,排烟量与送风量之比大于某定值就不会发生轰燃。送风可通入新鲜空气,排烟可减少热烟气浓度,有利于室内散热,所以在轰燃前采取合理通风排烟措施,比如打开门窗、启动机械排烟装置等都有利于灭火救援。但对于通风的时机和通风量的大小,指挥员一定要正确把握,对于已经充满浓烟的高温密闭的房间,谨防因开门通风引起回燃。(四)小队突击,内攻灭火通常对建筑火灾最有效的灭火措施就是内攻,直击火点,消灭火势。轰燃火灾由于高温、强辐射、室内热烟气浓、建筑有倒塌风险等特

    39、点,应该谨慎选择内攻时机,把突发险情的危害降到最低。在仔细侦查火情,掌握火势发展态势后,确保无轰燃发生危险征兆,比如:观察门窗有无浓烟翻滚或闪燃,着火房间门把手是否很热,室内烟气是否有明显的烘烤灼热感等。同时还应确保建筑没有倒塌危险,内攻进入时以精干小组为单位,做好安全防护和掩护,交叉掩护前进,注意避开吊顶、高热区等危险,遇有紧急情况,立即撤离。内攻应量力而行,火势太过猛烈时,不能勉强内攻,应先控制住火势,增援力量到达或兵力相对火势具有一定优势时再内攻灭火。(五)重点监护,防止倒塌和火势蔓延轰燃产生的高温对建筑构件和结构有巨大破坏作用,灭火过程中,要对建筑承重构件加强冷却保护,并应指定人员密切

    40、注意建筑破坏情况,一旦有倒塌危险就及时撤离。对于着火时间较长的建筑,冷却承重构件时,避免用冲击力过大的直流水直接向构件射水,尽量用开花水均匀冷却降温,防止高温的混凝土在水流冲击和冷却作用下开裂,强度下降。此外,扑救轰燃火灾中,把握火场全局,重点突破,加强冷却降温的同时,还应出枪抑制从门窗喷出的高温烟气和火焰,防止火势从门窗及管线向上层和四周蔓延。对于已经发展成全面燃烧的大火,应从整体上合理部署兵力,集中优势兵力控制火势,再逐步消灭火灾。五、结 语由于轰燃现象的复杂性,对于轰燃产生的条件及轰燃本质等问题研究还存有争议,需要进一步的理论研究和实验验证,随着轰燃研究的不断深入,我们可以更加有针对性地

    41、预防和抑制轰燃的发生,轰燃火灾中的消防灭火救援工作也会更加科学高效。 电石火灾处置对策研究摘 要:根据电石的理化性质和化学危险特性,结合电石火灾的特点,对电石火灾事故的处置方法和措施进行了探讨,具体从现场火情侦查、初期控制、灭火剂选用、安全防护与防暴和防止环境污染五个方面进行分析,研究了如何高效处置电石火灾事故。关键词:电石;火灾;灭火救援一、引言电石作为重要的基础化工原料,在保障国民经济平稳较快增长、满足相关行业需求等方面发挥着重要的作用,它广泛应用于工业、农业、建筑、医药等领域。电石本身不可燃,但遇水剧烈反应生成易燃易爆的气体乙炔,在工业生产中常引发火灾甚至爆炸。丹江口市辖区内的汉江集团电

    42、化公司、宏茂冶金公司电石年产量都达20万吨以上,新港金家湾工业园及三官殿还有数家小型电石生产、经营企业,丹江口市已经成为华中地区电石重要生产基地。然而,近几年因电石在生产、运输、贮存过程中发生的火灾事故比较频繁,造成了严重的经济损失。因此,我们有必要全面认识电石的火灾危险性,研究出高效的事故处置对策,提高灭火救援人员对电石火灾事故的处置能力。二、电石的理化性质(一)电石理化性质电石是碳化钙的俗称,它是工业上广泛使用的基本原料。纯净碳化钙为无色晶体,暴露空气中会吸水受潮而呈灰白色。工业电石为碳化钙与氧化钙的混合物,碳化钙含量70%-80%,外观呈灰色、棕黄色或黑褐色,一般由焦炭和石灰经高温熔炼得

    43、到。电石的化学分子式为CaC2,密度为2.22g/cm3,熔点447,沸点2300,闪点17,可导电,遇水剧烈反应生成乙炔,并放出热量,属于甲类第2项火灾危险物品。(二)电石的化学危险性(1)遇湿受潮燃烧。电石为一级遇湿易燃物品,遇水反应剧烈,生成乙炔和氢氧化钙,并放出热量,每公斤碳化钙水解放热约为1962J。乙炔爆炸极限为2.5%82%,在空气中达到爆炸极限浓度时,遇明火即发生爆炸。若电石包装不严而不慎受潮,会积聚一定的乙炔气和热量,当乙炔浓度处于爆炸极限范围内时,遇明火则爆炸。此外,乙炔的过量积累也可能导致物理爆炸。(2)受撞击引发爆炸。电石在受到碰撞、摩擦时,电石与容器间可能产生静电、火

    44、花,造成电石自燃甚至引爆聚集的乙炔。电石中一般含有少量硅、铁、镁、铝等杂质,这些杂质在碰撞摩擦中更容易产生火花。(3)高温下电石能与氯、硫、磷、乙醇、氯化氢等发生剧烈反应。电石与酸性溶液反应激烈,比遇水反应更剧烈,可能引起液体飞溅。(4)对人体皮肤具有腐蚀作用。电石粉末接触到皮肤,能与汗液反应生成氢氧化钙,对皮肤有腐蚀作用,可能引起皮肤瘙痒、发炎;不慎接触到眼睛,会引起结膜炎,灼伤眼部组织;吸入到体内会伤害呼吸系统和肠胃器官。三、电石火灾事故的特点(一)致灾因素多,突发性强由于电石的遇湿易燃性,在生产、储存、运输中任一环节出现问题都可能引起火灾,而且电石一旦燃烧,发展极为迅速。生产中防潮、防暴措施不到位,操作失误,电石意外淋雨,运输中货物碰撞等都能引发电石着火,遇明火还可能发生爆炸,使人猝不及防。此外,近年的电石火灾多发生于公路运输途中,并伴随着交通事故,事故发生地点不确定,情况复杂,也给救援力量的到达和现场救援组织展开带来了困难。(二)燃烧猛烈,易爆炸造成人员伤亡电石着火后会引起连锁反应,燃烧产生的高温会加速火焰传播,如果散落的电石附近有水源,或则遇到大雨天


    注意事项

    本文(程控滤波器设计方案比较分析.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png