欢迎来到咨信网! | 成为共赢成为共赢 咨信网助力知识提升 | 自信网络旗下运营:咨信网 自信AI创作助手 自信AI导航
咨信网
全部分类
  • 包罗万象   教育专区 >
  • 品牌综合   考试专区 >
  • 管理财经   行业资料 >
  • 环境建筑   通信科技 >
  • 法律文献   文学艺术 >
  • 学术论文   百科休闲 >
  • 应用文书   研究报告 >
  • ImageVerifierCode 换一换
    首页 咨信网 > 资源分类 > PDF文档下载
    分享到微信 分享到微博 分享到QQ空间

    工业钛液合成钛酸钠负极及其储钠性能.pdf

    • 资源ID:1507991       资源大小:7.33MB        全文页数:8页
    • 资源格式: PDF        下载积分:10金币
    微信登录下载
    验证码下载 游客一键下载
    账号登录下载
    三方登录下载: QQ登录
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    验证码: 获取验证码
    温馨提示:
    支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    VIP下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    声明    |    会员权益      获赠5币      写作写作
    1、填表:    下载求助     索取发票    退款申请
    2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
    6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    7、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

    工业钛液合成钛酸钠负极及其储钠性能.pdf

    1、第 55 卷 第 12 期2023 年 12 月Vol.55 No.12Dec.,2023无机盐工业INORGANIC CHEMICALS INDUSTRY工业钛液合成钛酸钠负极及其储钠性能张瑞,王正豪,陈良,郭孝东,罗冬梅(四川大学化学工程学院,四川成都 610065)摘要:采用传统方法制备钛酸钠材料时,所使用的钛源(如TiO2,四异丙醇钛等)均为分析纯试剂,由含钛矿物经过多道工序加工获得,导致成本较高且制备钛酸钠的流程冗长。以工业钛液为原料,通过常压水解制备的偏钛酸前驱体为钛源,使用高温固相法合成了钛酸钠负极材料,缩短了制备钛酸钠的流程。结果表明:合成的钛酸钠主要是Na2Ti3O7和Na2

    2、Ti6O13的混合相,在低电流密度为17.7 mA/g下,其初始放电比容量可达233.77 mAh/g;在电流密度为88.5 mA/g下循环200次后,放电比容量为26.87 mAh/g,容量保持率为47.56%,充放电效率为99.54%;所制备的混合钛酸钠的储钠过程以赝电容行为占主导作用。关键词:偏钛酸;钛酸钠;负极材料;钠离子电池;储能中图分类号:TQ134.11 文献标识码:A 文章编号:1006-4990(2023)12-0066-08Synthesis of sodium titanate anode from industrial titanium liquid and its s

    3、odium storage performanceZHANG Rui,WANG Zhenghao,CHEN Liang,GUO Xiaodong,LUO Dongmei(School of Chemical Engineering,Sichuan University,Chengdu 610065,China)Abstract:When traditional methods are used to prepare sodium titanate materials,the titanium sources used(such as TiO2,titanium tetrisopropyl al

    4、cohol,etc.)are all pure analytical reagents,which are processed by titaniumbearing minerals through multiple processes.The cost is high and the process of preparing sodium titanate is lengthy.Using industrial titanium liquid as the raw material,the metatitanic acid precursor prepared by atmospheric

    5、pressure hydrolysis was used as the titanium source,and the sodium titanate anode was synthesized by the hightemperature solidphase method,which shortened the preparation process of sodium titanate.The results showed that the synthesized sodium titanate was mainly a mixed phase of Na2Ti3O7 and Na2Ti

    6、6O13,and its initial discharge specific capacity could reach 233.77 mAh/g at a low current density of 17.7 mA/g.After 200 times at the current density of 88.5 mA/g,the discharge specific capacity of the prepared sodium titanate material was 26.87 mAh/g,its capacity retention rate was 47.56%,and its

    7、chargedischarge efficiency was 99.54%.After further analysis,the sodium storage process of the prepared mixed sodium titanate was dominated by pseudocapacitive behavior.Key words:metatilinic acid;sodium titanate;anode material;sodiumion battery;energy storage风能、太阳能和潮汐能等绿色能源逐渐引起人们的关注,利用绿色能源替换化石燃料正在成为

    8、实现碳达峰及碳中和的关键环节1。然而这些能源主要的缺点就是间歇性和不稳定性,为满足世界日益增长的能源需求,实现稳定的能源供应,一个主要的策略就是将清洁高效的能源存储,从可再生能源整合到不同的能源部门,如能源的运输和固定存储2-3。因此,储能系统开始发挥着变革性的作引用格式:张瑞,王正豪,陈良,等.工业钛液合成钛酸钠负极及其储钠性能 J.无机盐工业,2023,55(12):66-73.Citation:ZHANG Rui,WANG Zhenghao,CHEN Liang,et al.Synthesis of sodium titanate anode from industrial titani

    9、um liquid and its sodium storage performance J.Inorganic Chemicals Industry,2023,55(12):66-73.基金项目:国家自然科学基金资助项目(U20A20145)。收稿日期:2023-02-07作者简介:张瑞(1996),女,硕士,研究方向为钠离子电池负极材料钛酸钠的制备及电化学性能研究;E-mail:。通讯作者:罗冬梅(1969)女,教授,研究方向为矿物绿色加工、低品位矿及固废低碳资源化利用和储能材料;E-mail:。Doi:10.19964/j.issn.1006-4990.2023-0055 662023

    10、年 12 月张瑞等:工业钛液合成钛酸钠负极及其储钠性能用4。电化学储能作为储能系统的主要方式之一,越来越受到人们的重视。锂离子电池储能是目前被广泛应用的储能方式,但由于锂元素的丰度低且分布不均匀及随着电动汽车和电子类消费产品需求的进一步提升,锂离子电池的成本壁垒不断提高,寻求可替代的储能方案变得更加重要5-6。钠具有与锂相似的物理化学性质,且储量丰富、分布均匀、成本低廉,并且可使用价格更便宜的铝箔作为负极的集流体,使得钠离子电池的发展逐渐迎来了研究热潮7-8。目前,钠离子电池负极材料主要有碳基材料、合金类材料、金属化合物材料、钛基材料等。其中,碳基材料中硬碳材料技术逐渐发展成熟,但因为硬碳较低

    11、的首次库仑效率和较高的制造成本,限制了其实用化9;合金类材料和金属化合物材料虽然具有很高的储钠比容量,但存在充放电过程中体积膨胀严重导致材料循环性能差的问题10-12;钛基材料具有较低的氧化还原电位,钠离子可在这些材料中进行可逆嵌/脱,在充放电过程中具有安全性高、结构稳定性良好的特点,是一类有前景的钠离子电池负极材料13-15。Na2Ti3O7和Na2Ti6O13均是潜在的钛基钠离子电池负极材料。2011 年 SENGUTTUVAN等16首次报道了 Na2Ti3O7的储钠性能,该材料在0.3 V的平均电压下每分子式单元能可逆存储2个Na+。2013年RUDOLA等17报道了Na2Ti6O13在

    12、作为钠离子电池负极材料时也具有良好的倍率及循环性能。SHIRPOUR等18采用固相法,以TiO2(锐钛矿)和 Na2CO3高温焙烧制得 Na2Ti3O7和 Na2Ti6O13,并且还将合成的NaTi3O6(OH)2H2O(NNT)经600 高温脱水处理后分解得到Na2Ti3O7和Na2Ti6O13,这为进一步开发脱水NNT作为钠离子和锂离子电池负极材料提供了令人信服的理论基础。CHCH等19用微波辅助水热合成法制备了一种具有纳米棒状结构的Na2Ti3O7/Na2Ti6O13复合材料,其相组成为 42%的Na2Ti3O7和58%的Na2Ti6O13(质量分数,下同),该材料在0.02C的初始放电

    13、比容量为90 mAh/g,在进一步循环中施加0.2C时,显示出65 mAh/g的比容量。WU 等20采用简易水热法制备了一种新型层状Na2Ti3O7和隧道结构Na2Ti6O13的复合材料,其组成为26.22%的 Na2Ti3O7和 73.78%的 Na2Ti6O13,该材料在电流密度为 20 mA/g 时,初始放电比容量为212.52 mAh/g,即使电流密度提高到2 000 mA/g,经4 000次循环后仍可保持19.45 mAh/g的可逆比容量,库仑效率为100%。WU等20指出Na2Ti3O7材料中钠离子在层状结构中的迁移路径为锯齿状,离子扩散的传输电阻大,钠离子迁移过程中易发生相变,引

    14、起很大的体积效应;Na2Ti6O13材料中钠离子在隧道结构中的迁移路径为直通道状,离子扩散的传输电阻小,钠离子迁移过程中,结构变化微小,将两种材料复合后整体电化学性能得到提升。WANG等21以超临界甲醇和后续的液态二氧化碳制备了由 均 匀 碳 层 包 覆 的 层 状 Na2Ti3O7和 隧 道 结 构Na2Ti6O13的复合材料,其中组成为58%的Na2Ti3O7和42%的 Na2Ti6O13在 1 A/g 的高电流密度下,该材料放电比容量为44 mAh/g,充电过程中的平坦电压平台为0.7 V。CHANDEL 等22采用简易溶剂热法合成了具有花状形态的分级纳米棒结构的Na2Ti3O7/Na2

    15、Ti6O13复合材料,其组成为18%的Na2Ti3O7和82%的Na2Ti6O13,在100 mA/g的电流密度下,放电比容量为182 mAh/g,在500 mA/g的电流密度下,放电比容量为161 mAh/g。在上述研究中,研究者采用的钛源主要是分析级的四异丙醇钛和TiO2,由含钛矿物经过多道工序加工得到,原料成本较高。工业钛液是TiO2生产过程的中间产物,倘若以其为合成钛酸钠的原料,不仅可以简化生产流程、降低成本,更适合规模化工业应用。钛酸钠制备流程对比如图 1 所示。此外,与图1高温固相法制备钛酸钠传统工艺与新工艺流程对比Fig.1Comparison of traditional an

    16、d new processes for preparing sodium titanate by high temperature solid state method 无机盐工业第 55 卷第 12 期TiO2原料为固体粉末不同,工业钛液为液态,原料分散性更好,制备前驱体的过程更易掌握,可以通过水解沉淀进行形貌调控,最终通过高温固相法合成均一性更好的钛酸钠。本文以硫酸法钛白生产过程中廉价的中间产物工业钛液为原料,常压水解得到偏钛酸,以此作为含钛前驱体,在钠钛物质的量比为2 3的条件下与Na2CO3混合,焙烧合成了混合钛酸钠,作为钠离子电池负极活性材料。对材料进行了物相结构及形貌分析,并将活性

    17、材料涂片后组装成半电池对其电化学性能进行了研究,为规模化生产钛酸钠负极材料提供基础。1实验部分1.1实验试剂硫酸、无水碳酸钠、无水乙醇、N-甲基吡咯烷酮、聚偏二氟乙烯(PVDF)、乙炔黑,均为分析纯;金属钠(电池级),Whatman GF/D 玻璃纤维膜和 NC-004 1 mol/L的NaClO4,溶剂碳酸乙烯酯(EC)与碳酸丙烯酯(PC)体积比为l l,含质量分数5%的添加剂氟代碳酸乙烯酯(FEC)(电池级)电解液。1.2偏钛酸前驱体的制备本文采用的原料工业钛液取自攀枝花。工业钛液的各项参数如表1所示,工业钛液中的其他杂质元素含量如表2所示。以工业钛液为钛源,水解制备偏钛酸前驱体。反应前先

    18、分别预热工业钛液和底水至96,之后采用蠕动泵将钛液在16 min内匀速滴加至盛有底水的三口烧瓶中,滴加结束后升温至烧瓶内溶液达到微沸状态(第一沸点为106),观察钛液颜色变化。当钛液变为钢灰色时立即关闭加热和搅拌,熟化30 min,熟化结束后重启加热和搅拌,待钛液再次达到微沸状态(第二沸点为108)开始反应计时,待反应3 h后补热水10 mL,继续反应1 h后关闭加热和搅拌,将反应后的料浆冷却至45 左右后将料浆真空抽滤,并用100 mL 2%(质量分数)的稀硫酸进行洗涤至滤液液滴澄清透明,收集滤液并定容,滴定滤液中的钛含量,计算其水解率为96.8%。滤饼再用750 mL去离子水洗涤,然后将滤

    19、饼在60 的烘箱中干燥12 h之后将水解产物置于105 烘箱中干燥至恒重保存,经化学滴定法测得水解产物中钛质量分数为45.92%,由X射线荧光光谱仪(XRF)测得水解产物中杂质元素的含量如表3所示。1.3钛酸钠的合成以Na2CO3为钠源,按照n(Na)n(Ti)为2 3称取2 g偏钛酸前驱体,其中钠源过量5%(质量分数),取10 mL无水乙醇作为分散剂,加入到尼龙球磨罐中,在高速球磨机中球磨2 h,取出料浆置于表面皿中,室温风干去除大量无水乙醇后置于60 烘箱中干燥90 min,将干燥好的物料刮下置于研钵中充分研磨之后将混合物料移入方形瓷舟中,将瓷舟置于马弗炉在空气氛围中焙烧,焙烧温度为800

    20、,恒温20 h,升温/降温速率为5/min。1.4材料表征采用DX2700型X射线衍射仪测定水解产物和焙烧产物的晶体结构,扫描速率为9()/min,扫描角度为580;采用JSM 7610F型扫描电子显微镜对样品进行表面形貌分析。1.5电化学表征将活性材料、乙炔黑、聚偏二氟乙烯(PVDF)以质量比为 7 2 1 混合后置于球磨罐中,加入适量N-甲 基 吡 咯 烷 酮(NMP)作 为 溶 剂,以 转 速 为480 r/min球磨40 min之后取出料浆均匀涂覆在Cu箔上,涂层厚度为15 m,将涂覆好的极片在120 烘箱中真空干燥 12 h,干燥结束后切成直径为13 mm的圆形极片,作为扣式电池的工

    21、作电极。以直径为16 mm的金属钠圆片为对电极、直径为19 mm的Whatman GF/D玻璃纤维膜为隔膜、NC-004作为表1工业钛液溶液参数Table 1Parameters of industrial titanium oxysulfate solution总钛质量浓度(以TiO2计)/(gL-1)225.27F值1.90Ti3+质量浓度(以TiO2计)/(gL-1)2.00铁钛比0.28稳定性500注:F值为酸度系数,指有效酸含量(g/L)与总钛质量浓度(g/L)的比值;铁钛比是指钛液中铁元素与二氧化钛的质量浓度的比值;稳定性是指每毫升钛液用25 蒸馏水稀释到刚出现白色浑浊时所需要蒸馏

    22、水的毫升数,表达式为稳定性=用水总体积(mL)/所取钛液体积(mL)。表2工业钛液中其他杂质元素含量Table 2Contents of other impurity elementsin solution of titanium oxysulfateg/L (Mg)8.283(Al)1.503(Mn)1.931(V)0.603 3(Ca)0.218 5(Cr)0.154 3表3水解产物偏钛酸中杂质元素氧化物的质量分数Table 3Mass fraction of impurity elementsin hydrolysate metatitanic acid%w(SO2)3.688 9w(C

    23、r2O3)0.139 1w(Fe2O3)0.088 0w(ZrO)0.038 7w(P2O5)0.111 8w(Nb2O5)0.056 7w(SiO2)0.036 1 682023 年 12 月张瑞等:工业钛液合成钛酸钠负极及其储钠性能电解液,在充满氩气的手套箱中(水、氧含量均小于110-6 cm3/m3)组装CR2025型扣式半电池。用Neware BTS-610系统测试材料电化学性能,在17.7、35.4、88.5、177、354、531、885、1 770 mA/g的电流密度下测试材料的倍率性能,在88.5 mA/g的电流密度下进行恒电流循环测试,电压测试窗口为0.012.5 V。使用C

    24、HI760E电化学工作站进行钛酸钠材料的循环伏安(CV)和交流阻抗(EIS)测试。循环伏安测试的电压为0.012.5 V,扫描速率为0.12.0 mV/s;交流阻抗测试的频率为0.01105 Hz,交流振幅为5 mV。2结果与讨论2.1前驱体及焙烧产物的结构与形貌水解产物偏钛酸的XRD谱图如图2a所示。由图2a可知,水解产物结晶度较低,但是突出的衍射峰均对应锐钛矿型二氧化钛的衍射峰位置,表明水解产物属于锐钛矿型偏钛酸。偏钛酸与焙烧产物混合钛酸钠的XRD谱图如图2b所示。由图2b可知,以工业钛液水解得到的偏钛酸为钛源时,焙烧生成的产物主要包含两种钛酸钠物相,分别是Na2Ti3O7和Na2Ti6O

    25、13,此外还含有少量的Na2SO4杂相,表明水解产物偏钛酸中残存的硫酸根消耗一定的Na2CO3而生成了Na2SO4,导致在整个焙烧过程中钠源不足,生成的Na2Ti6O13不足以全部转化为 Na2Ti3O7,而是与 Na2Ti3O7相共存。由于Na2SO4对混合钛酸钠的电化学性能基本没有影响23,所以未将其去除。图3为水解产物偏钛酸和焙烧产物混合钛酸钠的SEM照片。由图3ac可知,水解产物偏钛酸均是由纳米颗粒聚集而成的微米级团聚体。由图3df可知,焙烧产物混合钛酸钠是微米棒状结构。2.2合成的钛酸钠电化学性能图 4a 为焙烧产物混合钛酸钠在电压为 0.012.5 V、扫描速率为0.1 mV/s的

    26、循环伏安曲线图。由图1a可知,在第1次循环中,在0.86 V处可以观察到一个宽的阴极峰,该处的峰可能是由于电解质还原的不可逆副反应和电极表面的SEI膜的形成引起的。在后续的两次循环曲线中均包含一对明显的氧化还原峰(0.89 V/0.77 V处)和另外的一个阳极峰(0.35 V处),这可归因于Ti4+/Ti3+氧化还原的特征反应。图 4b 为焙烧产物混合钛酸钠在17.7 mA/g下循环3次的充放电曲线。样品初始放电比容量为233.77 mAh/g,首次充电比容量为89.30 mAh/g,充放电效率为38.2%。第2次和第3次循环的放电比容量分别为 94.63 mAh/g 和 82.47 mAh/

    27、g,充放电效率分别为85.57%和89.68%,3次循环的容量保持率为35.3%。充放电效率低且不可逆容量损失巨大可能是由于电解质的分解及SEI膜的形成所导致的。a水解产物偏钛酸;b焙烧产物混合钛酸钠。图2水解产物偏钛酸和焙烧产物混合钛酸钠的XRD谱图Fig.2XRD patterns of hydrolyzed product metatitanicacid and calcined product mixed with sodium titanatea、b、c偏钛酸前驱体;d、e、f焙烧产物混合钛酸钠。图3水解产物偏钛酸和焙烧产物混合钛酸钠的SEM照片Fig.3SEM images of

    28、hydrolyzed metatitanic acid andcalcined product mixed with sodium titanate 无机盐工业第 55 卷第 12 期图5a为焙烧产物混合钛酸钠的倍率性能图。由图 5a 可知,在电流密度为 17.7、35.4、88.5、177、354、531、885、1 770 mA/g下各循环10次后,将电流密度调回至35.4 mA/g时,材料的放电比容量也可恢复到之前在35.4 mA/g下的比容量,说明材料的结构比较稳定。图 5b 为混合钛酸钠在电流密度为17.7 mA/g时的充放电循环性能图。由图5b可知,样品在该电流密度下循环100次后

    29、放电比容量为35.48 mAh/g,充放电效率为98.53%。图5c为混合钛酸钠在电流密度为88.5 mA/g的充放电循环性能图。由图5c可知,样品在该电流密度下循环15次后,放电比容量由56.49 mAh/g降到了28.83 mAh/g,循环200次后放电比容量为26.87 mAh/g,容量保持率为47.56%,充放电效率为99.54%。样品在前15次循环中的总的比容量衰减很大,可归因于材料中Na2Ti3O7组分在循环过程中发生相变,具有较大的体积效应,而在后续的循环中放电比容量较为稳定,与第15次循环的比容量相比,容量保持率为93.20%,这可归因于Na2Ti6O13隧道结构的稳定性。图6

    30、是焙烧产物钛酸钠在循环前和循环3次后的EIS谱图。由图6可以看出,产物的奈奎斯特图是由高频区域的一个半圆分量和低频区域的一条线性分量组成。对比3次循环前后的EIS谱图可知,组装的半电池在循环3次后的阻抗为110,小于循环前的2 300。这是由充放电过程中电极和电解质之间的电荷转移能力增强引起的,表明焙烧产物在循环的过程中存在动力学增强的活化过程。表4为不同原料和方法所制备的钛酸钠的性能对比情况20,24-27。对比表4中的数据可知,本文所制备的混合钛酸钠电化学性能虽然不是最优的,但也a钛酸钠的倍率性能图;b电流密度为17.7 mA/g的循环性能图;c电流密度为88.5 mA/g的循环性能图。图

    31、5焙烧产物混合钛酸钠的倍率性能图及循环性能图Fig.5Rate performance diagram and cyclic performance diagram of calcined product mixed with sodium titanatea循环伏安曲线;b前3次恒电流充放电曲线(电流密度为17.7 mA/g)。图4焙烧产物混合钛酸钠的电化学性能Fig.4Electrochemical performance of calcinedproduct mixed with sodium titanate图6焙烧产物混合钛酸钠循环前和循环3次后的EIS谱图Fig.6EIS plot

    32、 of calcined product mixed with sodiumtitanate before and after 3 times 702023 年 12 月张瑞等:工业钛液合成钛酸钠负极及其储钠性能有一定的性能优势,此外本文所制备的混合钛酸钠未进行特殊改性(如掺杂或进行高比容量材料的包覆),若在此基础上对材料进行改性研究,将会更有利于钛酸钠负极材料实现规模化生产。2.3混合钛酸钠的储钠行为为了研究合成的混合钛酸钠在钠离子储存过程中的行为,对混合钛酸钠电极材料组装的扣式电池的性能测试如图7所示。图7a为0.22.0 mV/s的扫描速率下对钛酸钠电极材料组装的扣式电池进行循环伏安测试

    33、结果。由图7a可知,在不同的扫描速率下得到的曲线呈现出相似的氧化还原峰形,峰电流随着扫描速率的增加而增加,氧化峰电位略有升高,还原峰电位略有下降,当扫描速率大于0.2 mV/s时,出现在0.35 V附近的阳极峰变弱并消失,可能是由于扫描速率增加导致电化学反应动力学过程受到影响,反应物在极短时间内被完全氧化的机会变小,从而导致该处的氧化峰消失,如图7a所示。根据已有报道28-29,峰值电流(i,mA)与扫描速率(v,mV/s)的对应关系为i=avb,其中a、b为调整参数。b值可以通过将峰值电流和扫描速率在对数坐标轴中进行线性拟合得到,关系式为lg i=blg v+lg a。对于电极材料,指数b的

    34、大小可以反应充放电过程中的电化学存储行为,b=0.5时存储过程为离子脱出/嵌入的扩散控制,b=1时存储过程由赝电容控制,当b在0.51时,表4本文所制备的混合钛酸钠与其他方法所制备的钛酸钠的电化学性能的对比Table 4Comparison of electrochemical performance of mixed with sodium titanate prepared in this paper with that prepared by other methods制备方法水热法20(850,焙烧12 h)溶胶-凝胶法24(780,焙烧10 h)喷雾干燥法25(800,8 h;1 0

    35、00,8 h)高温固相法26(800,24 h;800,20 h)高温固相法27(800,20 h;1 000,20 h)高温固相法(800,20 h)原料锐钛TiO2,NaOH丁醇钛,NaOHTiO2,Na2CO3TiO2和Na2CO3H2O,TiO2和NaOHTiO2(锐钛与金红石混合)和Na2CO3工业钛液水解得到的偏钛酸,Na2CO3产物物相Na2Ti3O7/Na2Ti6O13Na2Ti3O7;Na2Ti3O7/MWCNT800:Na2Ti3O7;1 000:Na2Ti3O724 h:CO-Na2Ti3O7;20 h:OH-Na2Ti3O7m-Na2Ti3O7;t-Na2Ti3O7Na

    36、2Ti3O7/Na2Ti6O13电流密度/循环次数/放电比容量20 mA/g,100次,约80 mAh/g;2 000 mA/g,4 000次,19.45 mAh/g0.2C,50次,8 mAh/g;0.2C,50次,160 mAh/g35.6 mA/g,500 次,44 mAh/g;178 mA/g,500次,32 mAh/g0.1C,100 次,10 mAh/g;0.1C,100 次,约76.9 mAh/g20 mA/g,20次,35.5 mAh/g;20 mA/g,20次,约92 mAh/g88.5 mA/g,200次,26.87 mAh/ga混合钛酸钠在不同扫描速率下的CV曲线;b氧化

    37、峰1的lg|i|与lg v的关系(i为峰值电流,v为扫描速率);c还原峰2的lg|i|与lg v的关系;d在扫描速率为1.2 mV/s下的电容贡献率;e不同扫描速率下赝电容和扩散控制贡献占比。图7混合钛酸钠电极材料组装的扣式电池的性能测试Fig.7Performance testing of button batteries assembled with mixed with sodium titanate electrode materials 无机盐工业第 55 卷第 12 期存储过程既有扩散控制也有赝电容控制,若b趋近于0.5,则以扩散控制为主导,若b趋近于1,则以赝电容控制为主导。本研

    38、究中将峰位1和峰位2处的峰值电流与扫描速率在对数坐标轴中进行线性拟合得到的b分别为0.834 9和0.733 6,如图7b和7c所示,b值均在0.51之间,表明材料的钠离子存储既有扩散控制过程也有赝电容过程。为了进一步研究所制备钛酸钠在钠离子存储过程中扩散控制和赝电容控制的贡献大小,利用电流i与扫描速率v的关系式i=k1v+k2v1/2(k1v和k2v1/2分别代表赝电容行为和离子扩散控制行为的电流)对两种钠离子存储行为进行定量分析30-31。当扫描速率为1.2 mV/s时,赝电容贡献占比为79%,如图7d所示。由图7e可知,当扫描速率分别为0.2、0.4、0.5、0.8、1.0、1.2、1.

    39、4、1.6、1.8、2.0 mV/s时,拟合计算得到材料储钠行为中赝电容贡献占比分别为 46%、61%、70%、69%、74%、79%、87%、85%、94%、92%。随着扫描速率的增加,赝电容贡献呈现逐渐增加的趋势,表明所制备材料的储钠行为中赝电容行为占主导作用,这与前文中材料在循环后阻抗减小说明存在动力学活化过程相一致。3结论本文通过工业钛液常压水解法制备了含钛原料偏钛酸,将其作为合成钛酸钠负极材料的前驱体,混钠焙烧产物是含有少量Na2SO4杂相的混合钛酸钠,表明以工业钛液直接水解得到的偏钛酸为钛源,按照钠钛物质的量比为2 3混合Na2CO3并在800 下焙烧 20 h,无法得到单一的 N

    40、a2Ti3O7,而是生成Na2Ti3O7和 Na2Ti6O13的混合相。所得到的混合钛酸钠在 17.7 mA/g 下初始放电比容量较高,可达233.77 mAh/g,但在循环中放电比容量衰减很快。所得混合钛酸钠的电化学性能具有Na2Ti3O7本身的容量衰减性,但也体现着Na2Ti6O13的循环稳定性。所得混合钛酸钠的储钠过程由赝电容行为主导,存在一定的电化学过程增强作用。因此,在利用偏钛酸合成钛酸钠时,单一的钛酸钠物相的制备及材料的循环稳定性的提升需要更进一步的研究。本研究采用的原材料为硫酸钛白法生产中的中间产物硫酸氧钛溶液,具有较大的成本优势,为工业化生产钛酸钠提供了一种思路。参考文献:1

    41、DONG Shengyang,LV Nan,WU Yulin,et al.Titanates for sodiumion storage J.Nano Today,2022,42:101349.2 DELMAS C.Sodium and sodiumion batteries:50 years of research J.Advanced Energy Materials,2018,8(17):1703137.3 PLACKE T,KLOEPSCH R,DHNEN S,et al.Lithium ion,lithium metal,and alternative rechargeable ba

    42、ttery technologies:The odyssey for high energy density J.Journal of Solid State Electrochemistry,2017,21(7):1939-1964.4 MATSUMOTO K,HWANG J,KAUSHIK S,et al.Advances in sodium secondary batteries utilizing ionic liquid electrolytes J.Energy&Environmental Science,2019,12(11):3247-3287.5 LIBICH J,MINDA

    43、 J,SEDLAKOV M,et al.Sodiumion batteries:Electrochemical properties of sodium titanate as negative electrode J.Journal of Energy Storage,2020,27:101150.6 HASA I,MARIYAPPAN S,SAUREL D,et al.Challenges of today for Na-based batteries of the future:From materials to cell metrics J.Journal of Power Sourc

    44、es,2021,482:228872.7 LI Shiyou,WEN Shuxiang,DING Hao,et al.Improve the electrochemical performance of Na2Ti3O7 nanorod through pitch coat ing J.ACS Sustainable Chemistry&Engineering,2022,10(13):4247-4257.8 MUKHERJEE A,DAS D,BANERJEE S,et al.Synthesis and electrochemical performance of in situ and ex

    45、 situ carbon coated Na2Ti3O7,as a promising anode for sodiumion batteries J.Electrochemical Science Advances,2022.Doi:10.1002/elsa.202100118.9 张希,杨军,乔志军,等.炭负极材料储钠机理的研究进展 J.化工新型材料,2023,51(1):51-55.ZHANG Xi,YANG Jun,QIAO Zhijun,et al.Application progress of carbon anode materials in sodiumion batterie

    46、s J.New Chemical Materials,2023,51(1):51-55.10 王祺.钠离子电池负极材料的研究进展 J.化工技术与开发,2022,51(8):52-54,5.WANG Qi.Research progress of anode materials for sodium ion batteriesJ.Technology&Development of Chemical Industry,2022,51(8):52-54,5.11 马存双,万延华,许永开,等.超薄氮硫掺杂碳包覆二硫化铁的制备及储钠性能 J.无机盐工业,2022,54(6):55-60.MA Cunsh

    47、uang,WAN Yanhua,XU Yongkai,et al.Preparation and sodium storage properties of ultrathin N and S doped carbon coated FeS2J.Inorganic Chemicals Industry,2022,54(6):55-60.12 包科杰,路凌然.新能源汽车电池负极材料的制备与性能研究 J.无机盐工业,2021,53(3):54-59.BAO Kejie,LU Lingran.Study on preparation and performance of negative electr

    48、ode materials for batteries of new energy vehicles J.Inorganic Chemicals Industry,2021,53(3):54-59.13 李凡群,赵星星.钠离子电池负极材料的研究现状 J.电池,2017,47(2):120-122.722023 年 12 月张瑞等:工业钛液合成钛酸钠负极及其储钠性能LI Fanqun,ZHAO Xingxing.Research status quo of anode materials for sodium ion battery J.Battery Bimonthly,2017,47(2):

    49、120-122.14 朱子翼,张英杰,董鹏,等.高性能钠离子电池负极材料的研究进展 J.化工进展,2019,38(5):2222-2232.ZHU Ziyi,ZHANG Yingjie,DONG Peng,et al.Research progress of anode materials for high performance sodiumion batteries J.Chemical Industry and Engineering Progress,2019,38(5):2222-2232.15 党荣彬,陆雅翔,容晓晖,等.钠离子电池关键材料研究及工程化探索进展 J.科学通报,202

    50、2,67(30):3546-3564.DANG Rongbin,LU Yaxiang,RONG Xiaohui,et al.Research progress of key materials and engineering exploration for Na-ion batteriesJ.Chinese Science Bulletin,2022,67(30):3546-3564.16 SENGUTTUVAN P,ROUSSE G,SEZNEC V,et al.Na2Ti3O7:Lowest voltage ever reported oxide insertion electrode f


    注意事项

    本文(工业钛液合成钛酸钠负极及其储钠性能.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表




    页脚通栏广告
    关于我们 - 网站声明 - 诚招英才 - 文档分销 - 便捷服务 - 联系我们 - 成长足迹

    Copyright ©2010-2024   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:4008-655-100    投诉/维权电话:4009-655-100   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   



    关注我们 :gzh.png  weibo.png  LOFTER.png