《平方差公式》-导学案.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平方差公式 平方 公式 导学案
- 资源描述:
-
《平方差公式》 导学案 学习目标 (一)知识点 1.经历探索平方差公式的过程. 2.会推导平方差公式,并能运用公式进行简单的运算. (二)能力要求 1.在探索平方差公式的过程中培养符号感和推理能力。 2.培养学生观察、归纳、概括的能力. (三)情感与价值观要求在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美. 学习重点:平方差公式的推导和应用. 学习难点:理解平方差公式的结构特征,灵活应用平方差公式 I.探究一:你能用简便的方法计算:(提示:把数化成整百,整千的运算,从而使运算简单) (1)2001×1999 (2)998×1002 (1)2001×1999=(2000+1)(2000-1) =20002-1×2000+1×2000+1×(-1) =20002-1 =4000000-1 =3999999. 2001×1999=20002-12 (2)998×1002=(1000-2)(1000+2) =10002+1000×2+(-2)×1000+(-2)×2 =10002-22 =1000000-4 =1999996. 998×1002=10002-22 它们积的结果都是两个数的平方差,那么其他满足这个特点的运算是否也有这个规律呢?我们继续进行探索. II.探究二: (1)(x+1)(x-1) (2)(m+2)(m-2) (3)(2x+1)(2x-1) (4)(n+3m)(n-3m) (6)(x+2y(x-2y) ①上面的算式具有怎样的特点:每个因式都是两项,它们都是两个数的和与差的积;. ②计算上面多项式的积 ③通过运算发现规律,并用语言叙述: 两个数的和与这两个数的差的积,等于这两个数的平方差. ④你能用字母表示这个规律吗 (a+b)(a-b)=a2-b2.其中a、b表示任意数,也可以表示任意的单项式、多项式。 III. 练习巩固: 1.判断下列计算是否正确;不正确给予改正: (1)(a+2)(a+3)=a2-6 × (2)(m+n)(n+m)= m2-n2 (3)(2a-8)(2a+8)=4a2-64 对 (4) (2m+n)(2m-n)=2m2-n2 × (5)(-3x+y)(3x-y)=9x2-y2 × 公式的结构特征:左边的两个多项式中有一项相同,有一项互为相反数,积的结果为相同项的平方减去互为相反数项的平方的差 2.(课时学案)填空:(1)(x+2)(x-2)= ( )2-( )2 (2)(5a+2b)( )= 25a-4b2 (3)( )(a-1)= 1-a2 认清公式:在等号左边的两个括号内分别没有符号变化的是a,变号的是b IV.例1:运用平方差公式计算: (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y) (4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2) 注:(1)公式中的字母a、b可以表示数,也可以是表示数的单项式、多项式即整式. (2)要符合公式的结构特征才能运用平方差公式. (3)有些多项式与多项式的乘法表面上不能应用公式,但通过加法或乘法的交换律、结合律适当变形实质上能应用公式. (4)运算的最后结果应该是最简才行 例2:计算: (1)102×98 (2)(y+2)(y-2)-(y-1)(y+5) (1)102×98=(100+2)(100-2) =1002-22 =10000-4 =9996 (2)(y+2)(y-2)-(y-1)(y+5) =y2-22-(y2+5y-y-5) =y2-4-y2-4y+5 =-4y+1. 只有符合公式要求的乘法才能用平方差简化运算,其余的运算仍按乘法法则进行 V.探究三: (课时学案探究二)怎样用图中的面积的集合意义来解释平方差公式?(书152思考) 附加:下列哪些多项式相乘可以用平方差公式? 认清公式:在等号左边的两个括号内分别没有符号变化的集团是a,变号的是b 计算: 课后反思:你学会了什么: 还有哪些不懂: 课后作业: 课时学案课后巩固展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




《平方差公式》-导学案.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/8661492.html