分享
分销 收藏 举报 申诉 / 14
播放页_导航下方通栏广告

类型2026届江苏省苏州市第一中学高一数学第一学期期末学业质量监测试题含解析.doc

  • 上传人:zj****8
  • 文档编号:12779132
  • 上传时间:2025-12-06
  • 格式:DOC
  • 页数:14
  • 大小:576.50KB
  • 下载积分:12.58 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2026 江苏省 苏州市 第一 中学 数学 学期 期末 学业 质量 监测 试题 解析
    资源描述:
    2026届江苏省苏州市第一中学高一数学第一学期期末学业质量监测试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知过点和的直线与直线平行,则的值为( ) A. B.0 C.2 D.10 2.点M(1,4)关于直线l:x-y+1=0对称的点的坐标是( ) A.(4,1) B.(3,2) C.(2,3) D.(-1,6) 3.零点所在的区间是() A. B. C. D. 4.若,,,则() A. B. C. D. 5.() A. B. C. D. 6.平行线与之间的距离等于( ) A. B. C. D. 7.下列函数中,在其定义域内既是增函数又是奇函数的是( ) A. B. C. D. 8.已知集合,则集合中元素的个数是() A.1个 B.2个 C.3个 D.4个 9.如果且,则等于 A.2016 B.2017 C.1009 D.2018 10.函数的定义域为D,若满足;(1)在D内是单调函数;(2)存在,使得在上的值域也是,则称为闭函数;若是闭函数,则实数的取值范围是( ) A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.点关于直线的对称点的坐标为______. 12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家.用其名字命名的“高斯函数”为:,表示不超过x的最大整数,如,,[2]=2,则关于x的不等式的解集为__________. 13.已知圆柱的底面半径为,高为2,若该圆柱的两个底面的圆周都在一个球面上,则这个球的表面积为______ 14.平面向量,,(R),且与的夹角等于与的夹角,则___. 15.如果实数满足条件,那么的最大值为__________ 16.已知是定义在上的奇函数,当时,,则时,__________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知A,B,C为的内角. (1)若,求的取值范围; (2)求证:; (3)设,且,,,求证: 18.已知函数的图象在直线的下方且无限接近直线. (1)判断函数的单调性(写出判断说明即可,无需证明),并求函数解析式; (2)判断函数的奇偶性并用定义证明; (3)求函数的值域. 19.已知 (1)化简; (2)若 是第三象限角,且,求的值 20.已知集合, (1)当m=5时,求A∩B,; (2)若,求实数m取值范围 21.定义在上奇函数,已知当时, 求实数a的值; 求在上的解析式; 若存在时,使不等式成立,求实数m的取值范围 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】因为过点和的直线与直线平行,所以两直线的斜率相等. 【详解】解:∵直线的斜率等于, ∴过点和的直线的斜率也是, ,解得, 故选:A. 【点睛】本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用. 2、B 【解析】设出关于直线对称点的坐标,利用中点和斜率的关系列方程组,解方程组求得对称点的坐标. 【详解】设关于直线对称点的坐标为,线段的中点坐标为,且在直线上,即①.由于直线的斜率为,所以线段的斜率为②.解由①②组成的方程组得,即关于直线对称点的坐标为. 故选:B 【点睛】本小题主要考查点关于直线的对称点的坐标的求法,考查方程的思想,属于基础题. 3、C 【解析】利用零点存在定理依次判断各个选项即可. 【详解】由题意知:在上连续且单调递增; 对于A,,,内不存在零点,A错误; 对于B,,,内不存在零点,B错误; 对于C,,,则,内存在零点,C正确; 对于D,,,内不存在零点,D错误. 故选:C. 4、A 【解析】先变形,然后利用指数函数的性质比较大小即可 【详解】, 因为在上为减函数,且, 所以,所以, 故选:A 5、D 【解析】根据诱导公式以及特殊角的三角函数值,即可容易求得结果. 【详解】因为. 故选:D. 6、C 【解析】,故选 7、D 【解析】在定义域每个区间上为减函数,排除.是非奇非偶函数,排除.故选. 8、C 【解析】根据,所以可取,即可得解. 【详解】由集合,, 根据, 所以, 所以中元素的个数是3. 故选:C 9、D 【解析】∵f(x)满足对任意的实数a,b都有f(a+b)=f(a)•f(b),∴令b=1得,f(a+1)=f(a)•f(1),∴,所以,共1009项,所以 . 故选D. 10、C 【解析】先判定函数的单调性,然后根据条件建立方程组,转化为使方程有两个相异的非负实根,最后建立关于的不等式,解之即可. 【详解】因为函数是单调递增函数, 所以即有两个相异非负实根, 所以有两个相异非负实根, 令,所以有两个相异非负实根, 令 则,解得. 故选. 【点睛】本题考查了函数与方程,二次方程实根的分布,转化法,属于中档题. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】设点关于直线的对称点为,由垂直的斜率关系, 和线段的中点在直线上列出方程组即可求解. 【详解】设点关于直线的对称点为, 由对称性知,直线与线段垂直,所以, 所以,又线段的中点在直线上, 即,所以, 由, 所以点关于直线的对称点的坐标为:. 故答案为:. 12、 【解析】解一元二次不等式,结合新定义即可得到结果. 【详解】∵, ∴, ∴, 故答案为: 13、 【解析】直接利用圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,利用勾股定理求出的值,然后利用球体的表面积公式可得出答案 【详解】 设球的半径为,由圆柱的性质可得, 圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边, 因为圆柱的底面半径为,高为2, 所以,, 因此,这个球的表面积为,故答案为 【点睛】本题主要圆柱的几何性质,考查球体表面积的计算,意在考查空间想象能力以及对基础知识的理解与应用,属于中等题 14、2 【解析】,与的夹角等于与的夹角,所以 考点:向量的坐标运算与向量夹角 15、1 【解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可 【详解】先根据约束条件画出可行域, 当直线过点时, z最大是1, 故答案为1 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题 16、 【解析】∵函数f(x)为奇函数∴f(-x)=-f(x)∵当x>0时,f(x)=log2x∴当x<0时,f(x)=-f(-x)=-log2(-x). 故答案为. 点睛:本题根据函数为奇函数可推断出f(-x)=-f(x)进而根据x>0时函数的解析式即可求得x<0时,函数的解析式 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1) (2)证明见解析(3)证明见解析 【解析】(1)根据两角和的正切公式及均值不等式求解; (2)先证明, 再由不等式证明即可; (3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证. 【小问1详解】 , 为锐角, , , 解得,当且仅当时,等号成立, 即. 【小问2详解】 在中,, , , . 【小问3详解】 由(2)知 , 令, 原不等式等价为, 在上为增函数, , , 同理可得, ,, , 故不等式成立, 问题得证. 【点睛】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式. 18、(1)函数在上单调递增, (2)奇函数,证明见解析 (3) 【解析】(1)根据函数的单调性情况直接判断; (2)根据奇偶性的定义直接判断; (3)由奇偶性直接判断值域. 【小问1详解】 因为随着增大,减小,即增大,故随增大而增大,所以函数在上单调递增. 由的图象在直线下方,且无限接近直线,得, 所以函数的解析式. 【小问2详解】 由(1)得,整理得, 函数定义域关于原点对称,, 所以函数是奇函数. 小问3详解】 方法一:由(1)知, 由(2)知,函数图象关于原点中心对称,故, 所以函数的值域为. 方法二:由,得,得,得,得,得,所以函数的值域为. 19、 (1);(2). 【解析】(1)利用诱导公式化简==;(2)由诱导公式可得,再利用同角三角函数关系求出即可 试题解析: (1) (2)∵, ∴, 又第三象限角, ∴, ∴ 点睛: (1)三角函数式化简的思路:①切化弦,统一名;②用诱导公式,统一角;③用因式分解将式子变形,化为最简 (2)解题时要熟练运用诱导公式和同角三角函数基本关系式,其中确定相应三角函数值的符号是解题的关键. 20、(1), (2) 【解析】(1)根据集合的交集、并集运算即得解; (2)转化为,分,两种情况讨论,列出不等式控制范围,求解即可 【小问1详解】 (1)当时,可得集合,, 根据集合的运算,得,. 【小问2详解】 解:由,可得, ①当时,可得,解得; ②当时,则满足,解得, 综上实数的取值范围是. 21、(1);(2);(3). 【解析】根据题意,由函数奇偶性的性质可得,解可得的值,验证即可得答案;当时,,求出的解析式,结合函数的奇偶性分析可得答案;根据题意,若存在,使得成立,即在有解,变形可得在有解设,分析的单调性可得的最大值,从而可得结果 【详解】根据题意,是定义在上的奇函数, 则,得经检验满足题意; 故; 根据题意,当时,, 当时,, 又是奇函数,则 综上,当时,; 根据题意,若存在,使得成立, 即在有解, 即在有解 又由,则在有解 设,分析可得上单调递减, 又由时,, 故 即实数m的取值范围是 【点睛】本题考查函数的奇偶性的应用,以及指数函数单调性的应用,属于综合题
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:2026届江苏省苏州市第一中学高一数学第一学期期末学业质量监测试题含解析.doc
    链接地址:https://www.zixin.com.cn/doc/12779132.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork