数学《参数方程》.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 参数方程 数学 参数 方程
- 资源描述:
-
第2讲 参数方程 【考情分析】 考查直线、圆和圆锥曲线的参数方程以及简单的应用问题. 基础梳理 1.参数方程的意义 在平面直角坐标系中,如果曲线上的任意一点的坐标x,y都是某个变量的函数并且对于t的每个允许值,由方程组所确定的点M(x,y)都在这条曲线上,则该方程叫曲线的参数方程,联系变数x,y的变数t是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.常见曲线的参数方程的一般形式 (1)经过点P0(x0,y0),倾斜角为α的直线的参数方程为(t为参数). 设P是直线上的任一点,则t表示有向线段的数量. (2)圆的参数方程(θ为参数). (3)圆锥曲线的参数方程 椭圆+=1的参数方程为(θ为参数). 双曲线-=1的参数方程为(φ为参数). 抛物线y2=2px的参数方程为(t为参数). 双基自测 1. 极坐标方程ρ=cos θ和参数方程(t为参数)所表示的图形分别是( ). A.直线、直线 B.直线、圆 C.圆、圆 D.圆、直线 解析 ∵ρcos θ=x,∴cos θ=代入到ρ=cos θ,得ρ=,∴ρ2=x,∴x2+y2=x表示圆. 又∵相加得x+y=1,表示直线. 答案 D 2.若直线(t为实数)与直线4x+ky=1垂直,则常数k=________. 解析 参数方程所表示的直线方程为3x+2y=7,由此直线与直线4x+ky=1垂直可得-×=-1,解得k=-6. 答案 -6 3.二次曲线(θ是参数)的左焦点的坐标是________. 解析 题中二次曲线的普通方程为+=1左焦点为(-4,0). 答案 (-4,0) 4.(2011·广州调研)已知直线l的参数方程为:(t为参数),圆C的极坐标方程为ρ=2sin θ,则直线l与圆C的位置关系为________. 解析 将直线l的参数方程:化为普通方程得,y=1+2x,圆ρ=2sin θ的直角坐标方程为x2+(y-)2=2,圆心(0,)到直线y=1+2x的距离为,因为该距离小于圆的半径,所以直线l与圆C相交. 答案 相交 5.(2011·广东)已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为________. 解析 由(0≤θ<π)得,+y2=1(y≥0)由(t∈R)得,x=y2,∴5y4+16y2-16=0. 解得:y2=或y2=-4(舍去). 则x=y2=1又θ≥0,得交点坐标为. 答案 考向一 参数方程与普通方程的互化 【例1】►把下列参数方程化为普通方程: (1) (2) [审题视点] (1)利用平方关系消参数θ; (2)代入消元法消去t. 解 (1)由已知由三角恒等式cos2 θ+sin2θ=1, 可知(x-3)2+(y-2)2=1,这就是它的普通方程. (2)由已知t=2x-2,代入y=5+t中, 得y=5+(2x-2),即x-y+5-=0就是它的普通方程. 参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围. 【训练1】 (2010·陕西)参数方程(α为参数)化成普通方程为________. 解析 由得 ①2+②2得:x2+(y-1)2=1. 答案 x2+(y-1)2=1 考向二 直线与圆的参数方程的应用 【例2】►已知圆C:(θ为参数)和直线l:(其中t为参数,α为直线l的倾斜角). (1)当α=时,求圆上的点到直线l距离的最小值; (2)当直线l与圆C有公共点时,求α的取值范围. [审题视点] (1)求圆心到直线l的距离,这个距离减去圆的半径即为所求;(2)把圆的参数方程化为直角坐标方程,将直线的参数方程代入得关于参数t的一元二次方程,这个方程的Δ≥0. 解 (1)当α=时,直线l的直角坐标方程为x+y-3=0,圆C的圆心坐标为(1,0),圆心到直线的距离d==,圆的半径为1,故圆上的点到直线l距离的最小值为-1. (2)圆C的直角坐标方程为(x-1)2+y2=1,将直线l的参数方程代入圆C的直角坐标方程,得t2+2(cos α+sin α)t+3=0,这个关于t的一元二次方程有解,故Δ=4(cos α+sin α)2-12≥0,则sin2≥,即sin≥或sin ≤-.又0≤α<π,故只能sin≥,即≤α+≤,即≤α≤. 如果问题中的方程都是参数方程,那就要至少把其中的一个化为直角坐标方程. 【训练2】 已知直线l的参数方程为(参数t∈R),圆C的参数方程为(参数θ∈[0,2π]),求直线l被圆C所截得的弦长. 解 由消参数后得普通方程为2x+y-6=0, 由消参数后得普通方程为(x-2)2+y2=4,显然圆心坐标为(2,0),半径为2.由于圆心到直线2x+y-6=0的距离为d==, 所以所求弦长为2 =. 考向三 圆锥曲线的参数方程的应用 【例3】►求经过点(1,1),倾斜角为135°的直线截椭圆+y2=1所得的弦长. [审题视点] 把直线方程用参数表示,直接与椭圆联立,利用根与系数的关系及弦长公式可解决. 解 由条件可知直线的参数方程是(t为参数),代入椭圆方程可得+2=1, 即t2+3t+1=0.设方程的两实根分别为t1、t2,则由二次方程的根与系数的关系可得则直线截椭圆的弦长是|t1-t2|== = . 普通方程化为参数方程:化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t,先确定一个关系x=f(t)(或y=φ(t)),再代入普通方程F(x,y)=0,求得另一关系y=φ(t)(或x=f(t)).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标).普通方程化为参数方程需要引入参数,选择的参数不同,所得的参数方程也不一样. 【训练3】 (2011·南京模拟)过点P(-3,0)且倾斜角为30°的直线和曲线(t为参数)相交于A、B两点,求线段AB的长. 解 直线的参数方程为(s为参数), 又曲线(t为参数)可以化为x2-y2=4,将直线的参数方程代入上式,得s2-6s+10=0, 设A、B对应的参数分别为s1,s2.∴s1+s2=6,s1s2=10.∴|AB|=|s1-s2|==2. 如何解决极坐标方程与参数方程的综合问题 从近两年的新课标高考试题可以看出,对参数方程的考查重点是直线的参数方程、圆的参数方程和圆锥曲线的参数方程的简单应用,特别是利用参数方程解决弦长和最值等问题,题型为填空题和解答题. 【示例】► (本题满分10分)(2011·新课标全国)在直角坐标系xOy中,曲线C1的参数方程为(α为参数). M是C1上的动点,P点满足=2,P点的轨迹为曲线C2. (1)求C2的方程; (2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|. 第(1)问:利用代入法;第(2)问把曲线C1、曲线C2均用极坐标表示,再求射线θ=与曲线C1、C2的交点A、B的极径即可. [解答示范] (1)设P(x,y),则由条件知M. 由于M点在C1上,所以即 从而C2的参数方程为(α为参数).(5分) (2)曲线C1的极坐标方程为ρ=4sin θ,曲线C2的极坐标方程为ρ=8sin θ. 射线θ=与C1的交点A的极径为ρ1=4sin , 射线θ=与C2的交点B的极径为ρ2=8sin . 所以|AB|=|ρ2-ρ1|=2.(10分) 很多自主命题的省份在选考坐标系与参数方程中的命题多以综合题的形式命题,而且通常将极坐标方程、参数方程相结合,以考查考生的转化与化归的能力. 【试一试】 (2011·江苏)在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程. [尝试解答] 由题设知,椭圆的长半轴长a=5,短半轴长b=3,从 而c==4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程:x-2y+2=0.故所求直线的斜率为,因此其方程为y=(x-4),即x-2y-4=0.展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




数学《参数方程》.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/8661129.html