分享
分销 收藏 举报 申诉 / 6
播放页_导航下方通栏广告

类型初中数学各题型考试常用技巧.docx

  • 上传人:小****库
  • 文档编号:556464
  • 上传时间:2023-12-12
  • 格式:DOCX
  • 页数:6
  • 大小:16.29KB
  • 下载积分:6 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    初中 数学 题型 考试 常用 技巧
    资源描述:
    选择题的解法 1、直接法: 根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。 2、特殊值法: (特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关; 在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。 3、淘汰法: 把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。 4、逐步淘汰法: 如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。 5、数形结合法: 根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。 常用的数学思想方法  1、数形结合思想: 就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2、联系与转化的思想: 事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。 在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。 如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3、分类讨论的思想: 在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。 4、待定系数法: 当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得解决。 5、配方法: 就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。 6、换元法: 在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。 7、分析法: 在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因” 8、综合法: 在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果” 9、演绎法: 由一般到特殊的推理方法。 10、归纳法: 由一般到特殊的推理方法。 11、类比法: 众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间;根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。类比法既可能是特殊到特殊,也可能一般到一般的推理。 函数、方程、不等式 常用的数学思想方法: ⑴数形结合的思想方法。 ⑵待定系数法。 ⑶配方法。 ⑷联系与转化的思想。 ⑸图像的平移变换。 证明角的相等 1、对顶角相等。 2、角(或同角)的补角相等或余角相等。 3、两直线平行,同位角相等、内错角相等。 4、凡直角都相等。 5、角平分线分得的两个角相等。 6、同一个三角形中,等边对等角。 7、等腰三角形中,底边上的高(或中线)平分顶角。 8、平行四边形的对角相等。 9、菱形的每一条对角线平分一组对角。 10、 等腰梯形同一底上的两个角相等。 11、 关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所 对的圆心角相等。 12、 圆内接四边形的任何一个外角都等于它的内对角。 13、 同弧或等弧所对的圆周角相等。 14、 弦切角等于它所夹的弧对的圆周角。 15、 同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。 16、 全等三角形的对应角相等。 17、 相似三角形的对应角相等。 18、 利用等量代换。 19、 利用代数或三角计算出角的度数相等 20、 切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。 证明直线的平行或垂直 1、证明两条直线平行的主要依据和方法: ⑴定义、在同一平面内不相交的两条直线平行。 ⑵平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。 ⑶平行线的判定:同位角相等(内错角或同旁内角),两直线平行。 ⑷平行四边形的对边平行。 ⑸梯形的两底平行。 ⑹三角形(或梯形)的中位线平行与第三边(或两底) ⑺一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。 2、证明两条直线垂直的主要依据和方法: ⑴两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。 ⑵直角三角形的两直角边互相垂直。 ⑶三角形的两个锐角互余,则第三个内角为直角。 ⑷三角形一边的中线等于这边的一半,则这个三角形为直角三角形。 ⑸三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。 ⑹三角形(或多边形)一边上的高垂直于这边。 ⑺等腰三角形的顶角平分线(或底边上的中线)垂直于底边。 ⑻矩形的两临边互相垂直。 ⑼菱形的对角线互相垂直。 ⑽平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。 ⑾半圆或直径所对的圆周角是直角。 ⑿圆的切线垂直于过切点的半径。 ⒀相交两圆的连心线垂直于两圆的公共弦。
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:初中数学各题型考试常用技巧.docx
    链接地址:https://www.zixin.com.cn/doc/556464.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork