一次函数之存在性问题.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 函数 存在 问题
- 资源描述:
-
(完整版)一次函数之存在性问题 一次函数之存在性问题( 知识点睛 函数背景下研究存在性问题,先把函数信息转化为几何信息,然后按照存在性问题来处理. ① 求坐标:___________________________;______________. ② 求函数表达式:__________________;_________________. ③ 研究几何图形:__________________;__________________. 二、精讲精练 1. 如图,直线与坐标轴分别交于A,B两点,点C在y轴上,且,直线CD⊥AB于点P,交x轴于点D. (1)求点P的坐标; (2)坐标系内是否存在点M,使以点B,P,D,M为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由. 2. 如图,在平面直角坐标系中,直角梯形OABC的边OC,OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=,点C的坐标为(-9,0). (1)求点B的坐标. (2)如图,直线BD交y轴于点D,且OD=3,求直线BD的表 达式. (3)若点P是(2)中直线BD上的一个动点,是否存在点P,使以O,D,P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. 3. 如图,直线y=kx-4与x轴、y轴分别交于B,C两点,且. (1)求B点的坐标和k的值. (2)若点A(x,y)是第一象限内的直线y=kx-4上的一个动点,则当点A运动到什么位置时,△AOB的面积是6? (3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. 4. 如图,在平面直角坐标系中,点A,B分别在x轴、y轴上,OA=6,OB=12,点C是直线y=2x与直线AB的交点,点D在线段OC上,OD=. (1)求直线AB的解析式及点C的坐标; (2)求直线AD的解析式; (3)P是直线AD上的一个动点,在平面内是否存在点Q,使以O,A,P,Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由. 5. 如图,直线与x轴、y轴分别交于A,B两点,点C的坐标为(—3,0),P(x,y)是直线上的一个动点(点P不与点A重合). (1)在P点运动过程中,试写出△OPC的面积S与x的函数关系式; (2)当P运动到什么位置时,△OPC的面积为,求出此时点P的坐标; (3)过P作AB的垂线分别交x轴、y轴于E,F两点,是否存在这样的点P,使△EOF≌△BOA?若存在,求出点P的坐标;若不存在,请说明理由. 【参考答案】 一、知识点睛 ① 函数表达式求出或表达出坐标;线段长转坐标. ② 坐标代入;k,b几何意义. ③ 坐标转线段长;k,b几何意义. 一次函数之存在性问题 (每日一题) 1. 如图,在直角坐标系中,一次函数y=的图象与x轴交于点A,与y轴交于点B. (1)已知OC⊥AB于C,求C点坐标; (2)在x轴上是否存在点P,使△PAB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由. 2. 如图,一次函数y=的函数图象与x轴、y轴分别交于点A,B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°. (1)求△ABC的面积; (2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值; (3)在坐标轴上是否存在一点Q,使△QAB是等腰三角形?若存在,请直接写出点Q所有可能的坐标;若不存在,请说明理由. 3. 如图,在平面直角坐标系中,直线y=x+1与y=—x+3交于点A,分别交x轴于点B和点C,点D是直线AC上的一个动点. (1)求出点A,B,C的坐标; (2)在直线AB上是否存在点E,使得以点E,D,O,A为顶点的四边形是平行四边形?如果存在,求出点E的坐标;如果不存在,请说明理由. 4. 如图,平面直角坐标系中,四边形OABC为直角梯形,CB∥OA,∠OCB=90°,CB=1,AB=,直线过A点,且与y轴交于D点. (1)求点A、点B的坐标; (2)试说明:AD⊥BO; (3)若点M是直线AD上的一个动点,在x轴上是否存在另一个点N,使以O,B,M,N为顶点的四边形是平行四边形?若存在,求出N点的坐标,若不存在,请说明理由. 5. 如图,在平面直角坐标系中,直线l1:y=分别与x轴、y轴交于点B,C,且与直线l2:y=交于点A. (1)求出点A,B,C的坐标; (2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式; (3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O,C,P,Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由. 一次函数之存在性问题(随堂测试) 1.如图,直线y=kx—1与x轴、y轴分别交于B,C两点,且。 (1)求B点的坐标和k的值. (2)若点A(x,y)是第一象限内的直线y=kx-1上的一个动点,则当点A运动到什么位置时,△AOB的面积是2? (3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. 一次函数之存在性问题(作业) 1. 如图,将Rt△AOB放入平面直角坐标系中,点O与坐标原点重合,点A在x轴上,点B在y轴上,OB=, ∠BAO=30°,将△AOB沿直线BE折叠,使得边OB落在AB上,点O与点D重合. (1)求直线BE的解析式; (2)求点D的坐标; (3)x轴上是否存在点P,使△PAD是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. 2. 如图,四边形ABCD为矩形,点D与坐标原点重合,点C在x轴上,点A在y轴上,点B的坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,点E,F分别在AD,AB上,且F点的坐标是(2,4). (1)求点G的坐标; (2)求直线EF的解析式; (3)坐标系内是否存在点M,使以点A,E,F,M为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由. 3. 如图,在平面直角坐标系中,直线y=-x+8与x轴、y轴分别交于点A,B,点P(x,y)是直线AB上一动点(点P不与点A重合),点C(6,0),O 是坐标原点,设△PCO的面积为S. (1)求S与x的函数关系式. (2)当点P运动到什么位置时,△PCO的面积为15? (3)过点P作AB的垂线分别交x轴、y轴于点E,F,是否存在这样的点P,使△EOF≌△BOA?若存在,求出点P的坐标;若不存在,请说明理由. 15展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




一次函数之存在性问题.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2223497.html