基于BLUE的雷达_红外异步融合算法研究.pdf
《基于BLUE的雷达_红外异步融合算法研究.pdf》由会员分享,可在线阅读,更多相关《基于BLUE的雷达_红外异步融合算法研究.pdf(7页珍藏版)》请在咨信网上搜索。
1、第5期2023年10月Vol.21 No.5October 2023雷达科学与技术Radar Science and TechnologyDOI:10.3969/j.issn.16722337.2023.05.015基于BLUE的雷达/红外异步融合算法研究盛琥1,汪海兵2(1.中国电子科技集团公司第三十八研究所,安徽合肥 230088;2.国防科技大学电子对抗学院,安徽合肥 230037)摘要:多传感器融合是提高态势感知能力的重要手段。为提高探测能力,将雷达和红外传感器组网,各传感器独立工作,在统一调度下,完成探测、跟踪、识别任务。研究该系统的雷达/红外数据融合算法,针对传感器异步探测特点,采
2、用观测驱动的融合跟踪方法:雷达探测到目标时,采用基于状态预测的改进BLUE(Best Linear Unbiased Estimation)滤波,通过方位预测的辅助,减小测角误差非线性效应,提高跟踪性能;红外探测到目标时,基于方位预测和斜距观测,构造新的转换量测模型,实现基于不完备观测的修正BLUE滤波器。理论分析和仿真证明:所述雷达/红外数据融合方法,在不同传感器布局下都具备更优的综合性能,其设计思想可解决其他类似的多传感器融合问题,有较好的应用推广潜力。关键词:多传感器数据融合;非线性滤波;最佳线性无偏估计;卡尔曼滤波中图分类号:TN953文献标志码:A文章编号:16722337(2023
3、)05057506Asynchronous Fusion Algorithm Research Based on BLUE for Netted System ofRadar/IR SensorsSHENG Hu1,WANG Haibing2(1.The 38th Research Institute of China Electronics Technology Group Corporation,Hefei 230088,China;2.College of Electronic Engineering,National University of Defense Technology,H
4、efei 230037,China)Abstract:Multisensor fusion plays an important role in situation awareness improvement.To improve detectionability,a radar/infrared netted system is proposed.All sensors work independently,and accomplish detection,tracking,and recognition tasks under unified schedule.For radar targ
5、et tracking,an improved BLUE(Best Linear Unbiased Estimation)filter is presented,which enhances tracking ability by decreasing azimuth estimation error.For infrared targettracking,a modified BLUE filter is presented,which solves the bearingonly target tracking problem.Theoretic analysisand numeric r
6、esults verify that the proposed approach exhibits improved tracking performance and computational advantage over others in different sensor geometries.The architecture design can be used to solve other multisensor fusionproblems,so this scheme is worth further development and promotion.Key words:mul
7、tisensor data fusion;nonlinear filtering;best linear unbiased estimation;Kalman filter0引言多传感器数据融合是当前研究的热点。以常见的雷达/红外数据融合为例,雷达探测距离远,单次观测就能定位目标,且具备全天候工作能力,但容易被反辐射武器打击;红外传感器不辐射信号,抗毁性强,测角精度高,但探测范围小,且无法测距,需要在其他传感器引导下发现目标。两种传感器组网,在中心统一调度下,对目标协同探测,信息融合,可实现优势互补、协同增效。由于两种传感器的观测模型不同,探测时间不同步,红外传感器数据更新率远高于雷达,因此该
8、组网系统面临两个问题:一是如何基于不同传感器观测,估计目标状态,即非线性滤波问题;二是如何保证跟踪精度和实时性。传统非线性方法包括扩展 Kalman 滤波(Extended Kalman Filter,EKF)、粒子滤波1(ParticleFilter,PF)、容积 Kalman 滤波2(Cubature KalmanFilter,CKF)或无迹Kalman滤波(Unscented KalmanFilter,UKF)、转换量测 Kalman 滤波3(ConvertedMeasurement Kalman Filter,CMKF)等。上述方法中,EKF 计算量最小,但鲁棒性差;PF、UKF、CK
9、F收稿日期:20230321;修回日期:20230522基金项目:安徽省自然科学基金(No.1708085MF153)雷达科学与技术第 21 卷 第 5 期精度高,但计算量大,实用性差。CMKF实现简单,且兼顾精度和计算量,因此应用较广。CMKF中最具代表性的滤波方法是 BLUE(Best Linear Unbiased Estimation),相比EKF,它的鲁棒性好;相比采样类滤波方法(CKF、UKF、PF),它的计算量小,因此在实用中受到重视,相关研究较多。其应用从常规目标跟踪,拓展到多普勒目标跟踪、只测角目标跟踪、机动目标跟踪等方面,在诸多场景得到应用49。基于以上分析,在雷达/红外组
10、网系统中,应用基于BLUE的异步融合算法跟踪目标。1基于BLUE的雷达/红外组网系统BLUE滤波是CMKF中的代表性算法。CMKF将非线性观测转换为直角坐标系内的伪线性表达,推导转换量测统计特性后,在 Kalman滤波架构下完成状态估计。目前已有嵌套CMKF、基于量测的CMKF、去相关CMKF和BLUE等多种算法,在多普勒目标跟踪、相控阵雷达目标跟踪中得到验证。BLUE滤波相比其他方法,精度高、计算量小,没有Kalman滤波的诸多限制,因此受到关注。BLUE算法假设目标状态满足线性条件。xk=Fk/k-1xk-1+wk(1)xk是k时刻状态,过程噪声wkN()0,Qk,Fk/k-1是状态转移矩
11、阵。假设目标状态先验估计x0和误差协方差矩阵P0已知,BLUE滤波器有如下递归形式6:第一步预测k时刻目标状态x k和协方差阵Pk。xk-1和Pk-1是k-1时刻状态估计及协方差阵。x k=Fk/k-1xk-1Pk=Fk/k-1Pk-1FTk/k-1+Qk(2)第二步计算转换量测误差zk和滤波增益因子Kk。zk是k时 刻 转 换 量 测,z k是 对zk的 预 测。cov()xk,zk是预测误差xk和zk的协方差阵,Sk是zk的协方差阵。zk=zk-z kKk=cov()xk,zkS-1k(3)第三步估计目标状态xk和协方差阵Pk。xk=x k+KkzkPk=Pk-KkSkKTk(4)上述过程
12、递归进行,完成目标状态持续更新。可见,BLUE滤波的关键是构建转换量测zk,并在线估计z k、Sk和cov()xk,zk等参数。雷达/红外组网系统以指控中心位置为参考原点,估计目标状态;中心和传感器位置不同,各传感器的录取时刻和观测维度也不同,因此雷达和红外传感器需要采用不同的BLUE滤波器,异步融合跟踪目标,具体步骤如下:1)基于多帧雷达观测和目标运动特性,建立多个暂时航迹(可能的目标航迹)。2)定期检查暂时航迹,判断其是否满足起始条件,满足条件转到步骤3,将暂时航迹转为稳定航迹,否则继续维护暂时航迹。3)基于暂时航迹的历史观测,粗略估计目标初始状态,建立航迹。4)如果雷达录取的点迹与航迹关
13、联,采用改进BLUE滤波器,更新该航迹;如果红外传感器录取的点迹与航迹关联,采用修正BLUE滤波器,更新该航迹。5)定期检查航迹,如果航迹连续多帧录取不到点迹,判断目标消失,删除该航迹。下面针对步骤 4 的航迹更新部分,介绍改进BLUE滤波器和修正BLUE滤波器的实现。后续推导中,以中心位置为原点,雷达坐标X1Y1,红外传感器坐标X2Y2,目标状态向量为xxyyT。雷达观测为斜距rm,1和方位m,1,红外传感器观测为方位m,2(下标 1 表示雷达观测,下标 2 表示红外观测)。2改进BLUE滤波算法雷达观测为斜距rm,1和方位m,1,观测与真值的关系为rm,1=r+rm,1,m,1=+m,1(
14、5)观测噪声符合高斯分布rm,1N()0,r,1,m,1N()0,1。传统雷达的转换量测模型如下:zk,1=rm,1cosm,1sinm,1(6)当斜距和方位误差的乘积变大时,基于该模型的BLUE滤波器性能变差。原因如下:将式(5)展开576盛琥:基于BLUE的雷达/红外异步融合算法研究2023 年第 5 期zk=()r+rm,1coscosm,1-sinsinm,1sincosm,1+cossinm,1(7)转换量测包含rm,1、cosm,1和sinm,1三个误差源。测距误差rm,1相对距离r是微量,对精度影响很 小;sinm,1 m,1,sinm,1与m,1近 似 线 性;而cosm,1
15、1-2m,1/2,cosm,1与m,1是非线性关系,破坏了 BLUE 滤波器的线性量测假设,影响滤波性能。因此改进转换量测模型为如下形式:zk,1=rm,1cosf,1sinf,1(8)方位估计f,1是方位观测m,1和方位预测p,1的加权和,表达式如下:f,1=()1-k,1p,1+k,1m,1,0 k,1 1(9)显然当加权系数k,1 2,11,2,1 2,12=0,2r,12r,14()2r,1-2r,1r24,1,42r,12r,12r,1-r24,141,2r,12r,1-r24,14计算出k,1后,f,1的方差2f,1近似为2f,1=2k,12,1+()1-2k,122,1 2k,1
16、2,1(19)根据公式(8)的转换量测zk,1,在线估计z k,1、Sk,1和cov()xk,1,zk,1等参数(具体表达式见文献 6 的公式(24)(26),对目标滤波跟踪。3修正BLUE滤波算法红外传感器观测m,2与真值的关系为m,2=+m,2(20)观测噪声符合高斯分布m,2N()0,2。红外传感器的斜距预测为rp,2=()x -X22+()y -Y22(21)rp,2的方差2r,2的表达式如下:2r,2=()x-X22Pk(1,1)+()y-Y22Pk(3,3)+2()x-X2()y-Y2Pk(1,3)()x-X22+()y-Y22(22)得到rp,2后,构建k时刻转换量测zk,2,下
17、标2表示红外传感器的转换量测。zk,2=rp,2cosf,2sinf,2(23)其中,f,2=()1-k,2p,2+k,2m,2,0 k,2 1(24)方位预测p,2和方差2,2表达式如下:p,2=tg-1()y -Y2x -X2(25)2,2()x-X22Pk(3,3)+()y-Y22Pk(1,1)-2()x-X2()y-Y2Pk(1,3)()x-X22+()y-Y222(26)类似改进BLUE滤波器,通过在红外传感器径向和切向上分别加以约束,可以求解加权系数k,2。约束1的数学表达式为2k,22,2 2,2(27)约束2的数学表达式为4k,2r2p,24,24 2r,2(28)k,2的表达
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 BLUE 雷达 红外 异步 融合 算法 研究
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。