分享
分销 收藏 举报 申诉 / 13
播放页_导航下方通栏广告

类型辽宁省朝阳市凌源市联合校2025年高一数学第一学期期末监测模拟试题含解析.doc

  • 上传人:zj****8
  • 文档编号:12779217
  • 上传时间:2025-12-06
  • 格式:DOC
  • 页数:13
  • 大小:538.50KB
  • 下载积分:12.58 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    辽宁省 朝阳市 凌源市 联合 2025 年高 数学 第一 学期 期末 监测 模拟 试题 解析
    资源描述:
    辽宁省朝阳市凌源市联合校2025年高一数学第一学期期末监测模拟试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.若,,,则a,b,c的大小关系是   A. B. C. D. 2.已知集合A={t2+s2|t,s∈Z},且x∈A,y∈A,则下列结论正确的是 Ax+y∈A B.x-y∈A C.xy∈A D. 3.已知函数.在下列区间中,包含零点的区间是() A.(0,1) B.(1,2) C.(2,3) D.(3,4) 4.的值是   A. B. C. D. 5.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终边与单位圆相交于点,则( ) A. B. C. D. 6.已知函数(,),若的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,则的取值范围是( ) A. B. C. D. 7.若函数在上是增函数,则实数的取值范围是() A. B. C. D. 8.如果直线和 同时平行于直线x-2y+3=0,则a,b的值为 A.a= B.a= C.a= D.a= 9.斜率为4的直线经过点A(3,5),B(a,7),C(-1,b)三点,则a,b的值为(  ) A.a= ,b=0 B.a=-,b=-11 C.a=,b=-11 D.a=-,b=11 10.设,且,则等于() A.100 B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知是R上的奇函数,且当时,,则的值为___________. 12.下列说法中,所有正确说法的序号是__________ ①终边落在轴上角的集合是; ②函数图象一个对称中心是; ③函数在第一象限是增函数; ④为了得到函数的图象,只需把函数的图象向右平移个单位长度 13.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为4的直角三角形,俯视图是半径为2的四分之一圆周和两条半径,则这个几何体的体积为______ 14.函数的最大值为( ). 15.已知向量,满足=(3,-4),||=2,|+|=,则,的夹角等于______ 16.已知直线与圆C:相交于A,B两点,则|AB|=____________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.(1)化简 (2)求值. 18.定义在(-1,1)上的奇函数为减函数,且,求实数a的取值范围. 19.已知函数. (1)若点在角的终边上,求的值; (2)若,求的值域. 20.如图,四棱锥的底面是正方形,,点在棱上. (Ⅰ)求证:; (Ⅱ)当且为的中点时,求与平面所成的角的大小. 21.设函数 (1)写出函数的最小正周期及单调递减区间; (2)当时,函数的最大值与最小值的和为,求不等式的解集 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】由题意,根据实数指数函数性质,可得,根据对数的运算性质,可得,即可得到答案. 【详解】由题意,根据实数指数函数的性质,可得, 根据对数的运算性质,可得; 故选C 【点睛】本题主要考查了指数函数与对数函数的运算性质的应用,其中解答中合理运用指数函数和对数函数的运算性质,合理得到的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 2、C 【解析】∵集合A={t2+s2∣∣t,s∈Z}, ∴1∈A,2∈A,1+2=3∉A,故A“x+y∈A”错误; 又∵1−2=−1∉A,故B“x−y∈A”错误; 又∵,故D“∈A”错误; 对于C,由,设,且. 则 . 且,所以. 故选C. 3、C 【解析】根据导数求出函数在区间上单调性,然后判断零点区间. 【详解】解:根据题意可知和 在上是单调递减函数 在上单调递减 而 有函数的零点定理可知,零点的区间为. 故选:C 4、B 【解析】由余弦函数的二倍角公式把等价转化为,再由诱导公式进一步简化为,由此能求出结果 详解】,故选B 【点睛】本题考查余弦函数的二倍角公式的应用,解题时要认真审题,仔细解答,注意诱导公式的灵活运用,属于基础题. 5、C 【解析】由已知利用任意角的三角函数求得,再由二倍角的余弦公式求解即可 【详解】解:因为角的终边与单位圆相交于点, 则, 故选:C 6、C 【解析】由已知得,,且,解之讨论k,可得选项. 【详解】因为的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,所以,所以,故排除A,B; 又,且,解得, 当时,不满足, 当时,符合题意, 当时,符合题意, 当时,不满足,故C正确,D不正确, 故选:C. 【点睛】关键点睛:本题考查根据正弦型函数的对称性求得参数的范围,解决问题的关键在于运用整体代换的思想,建立关于的不等式组,解之讨论可得选项. 7、B 【解析】令,则可得,解出即可. 【详解】令,其对称轴为, 要使在上是增函数, 则应满足,解得. 故选:B. 8、A 【解析】由两直线平行时满足的条件,列出关于方程,求出方程的解即可得到的值. 【详解】直线和同时平行于直线, , 解得,故选A. 【点睛】本题主要考查两条直线平行的充要条件,意在考查对基础知识的理解与应用,属于基础题. 9、C 【解析】因为,所以,则,故选C 10、C 【解析】由,得到,再由求解. 【详解】因为, 所以, 则, 所以, 则, 解得, 故选:C 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】由已知函数解析式可求,然后结合奇函数定义可求. 【详解】因为是R上的奇函数,且当时,, 所以,所以 故答案为: 12、②④ 【解析】当时,,终边不在轴上,①错误;因为,所以图象的一个对称中心是,②正确;函数的单调性相对区间而言,不能说在象限内单调,③错误;函数的图象向右平移个单位长度,得到的图象,④正确.故填②④ 13、 【解析】由题得几何体为圆锥的,根据三视图的数据计算体积即可 【详解】由三视图可知几何体为圆锥的,圆锥的底面半径为2,母线长为4, ∴圆锥的高为 ∴V=×π×22×= 故答案为 【点睛】本题主要考查了圆锥的三视图和体积计算,属于基础题 14、 【解析】利用可求最大值. 【详解】因为,即,,取到最小值; 所以函数的最大值为. 故答案为:. 【点睛】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养. 15、 【解析】利用求解向量间的夹角即可 【详解】因为,所以, 因为,所以, 即, 所以, 所以, 因为向量夹角取值范围是, 所以向量与向量的夹角为 【点睛】本题考查向量的运算,这种题型中利用求解向量间的夹角同时需注意 16、6 【解析】先求圆心到直线的距离,再根据弦心距、半径、弦长的几何关系求|AB|. 【详解】因为圆心C(3,1)到直线的距离, 所以 故答案为:6 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2). 【解析】(1)利用指数运算性质化简可得结果; (2)利用对数、指数的运算性质化简可得结果. 【详解】(1)原式; (2)原式. 18、 【解析】结合奇函数性质以及单调性,去掉外层函数,变成一元二次不等式进行求解. 【详解】由题即 根据奇函数定义可知原不等式为 又因为单调递减函数,故,解得或 又因为函数定义域为故,解得, 所以 综上得的范围为. 19、(1);(2). 【解析】(1)先根据三角函数定义求得,,再求的值即可; (2)根据题意得,再结合三角函数的性质即可求得答案. 【详解】解:(1)因为点在角的终边上, 所以,, 所以 . (2)令, 因为,所以, 而在上单调递增,在上单调递减, 且,, 所以函数在上的最大值为1,最小值为, 即, 所以的值域是. 【点睛】本题考查三角函数的定义,整体换元法求函数的值域,考查运算能力,是中档题. 20、 (1)见解析 (2) 【解析】(Ⅰ)欲证平面AEC⊥平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB垂直,而根据题意可得AC⊥平面PDB; (Ⅱ)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在Rt△AOE中求出此角即可 【详解】(1)证明:∵底面ABCD是正方形 ∴AC⊥BD 又PD⊥底面ABCD PD⊥AC 所以AC⊥面PDB 因此面AEC⊥面PDB (2)解:设AC与BD交于O点,连接EO 则易得∠AEO为AE与面PDB所成的角 ∵E、O为中点 ∴EO=PD ∴EO⊥AO ∴在Rt△AEO中 OE=PD=AB=AO ∴∠AEO=45° 即AE与面PDB所成角的大小为45° 本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题 21、(1)最小正周期为;递减区间为:;(2) 【解析】(1)化函数为正弦型函数,求出它的最小正周期和单调递减区间; (2)根据时求得的最大值和最小值,由此求得的值,再求不等式的解集 【详解】(1) , ∴, 令, ∴, ∴函数的递减区间为: (2)由得:, ∴,, ∴, ∴, ∴, 又, ∴不等式的解集为 【点睛】方法点睛:三角函数的一般性质研究:1.周期性:根据公式可求得;2.单调性:令,解出不等式,即可求出函数的单调递增区间;令,解出不等式,即可求出函数的单调递减区间.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:辽宁省朝阳市凌源市联合校2025年高一数学第一学期期末监测模拟试题含解析.doc
    链接地址:https://www.zixin.com.cn/doc/12779217.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork