2025-2026学年江苏南京市、盐城市高一数学第一学期期末经典模拟试题含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2025 2026 学年 江苏 南京市 盐城市 数学 第一 学期 期末 经典 模拟 试题 解析
- 资源描述:
-
2025-2026学年江苏南京市、盐城市高一数学第一学期期末经典模拟试题 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知扇形的周长为8,扇形圆心角的弧度数是2,则扇形的面积为() A.2 B.4 C.6 D.8 2.如图是一算法的程序框图,若输出结果为,则在判断框中应填入的条件是() A. B. C. D. 3.两平行直线l1:3x+2y+1=0与l2:6mx+4y+m=0之间的距离为 A.0 B. C. D. 4.已知表示不大于的最大整数,若函数在上仅有一个零点,则实数的取值范围为( ) A. B. C. D. 5.下列不等关系中正确的是 ( ) A. B. C. D. 6.若函数的零点所在的区间为,则整数的值为() A. B. C. D. 7.奇函数f(x)在(-∞,0)上单调递增,若f(-1)=0,则不等式f(x)<0的解集是. A.(-∞,-1)∪(0,1) B.(-∞,-1)∪(1,+∞) C.(-1,0)∪(0,1) D.(-1,0)∪(1,+∞) 8.已知函数y=log2(x2-2kx+k)的值域为R,则k的取值范围是( ) A.0<k<1 B.0≤k<1 C.k≤0或k≥1 D.k=0或k≥1 9.已知向量,,若,则() A. B. C.2 D.3 10.已知函数在上图像关于轴对称,若对于,都有,且当时,,则的值为( ) A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.在三棱锥中,,,,则三棱锥的外接球的表面积为________. 12.已知角的终边经过点,则的值是______. 13.已知正三棱柱的所有顶点都在球的球面上,且该正三棱柱的底面边长为2,高为,则球的表面积为________ 14.若扇形AOB的圆心角为,周长为10+3π,则该扇形的面积为_____ 15.若函数是定义在上的偶函数,当时,.则当时,______,若,则实数的取值范围是_______. 16.函数的定义域为__________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.求值:(1); (2). 18.求解下列问题: (1)已知,,求的值; (2)已知,求的值. 19.已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边经过点. (1)求的值; (2)若第一象限角满足,求的值. 20.已知函数是定义在上的偶函数,且. (1)求实数的值,并证明; (2)用定义法证明函数在上增函数; (3)解关于的不等式. 21.已知是第二象限,且,计算: (1); (2) 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】由给定条件求出扇形半径和弧长,再由扇形面积公式求出面积得解. 【详解】设扇形所在圆半径r,则扇形弧长,而, 由此得,所以扇形的面积. 故选:B 2、B 【解析】依次执行循坏结构,验证输出结果即可. 【详解】根据程序框图,运行结构如下: 第一次循环,, 第二次循环,, 第三次循环,, 此时退出循环,故应填:. 故选:B. 3、C 【解析】根据两平行直线的系数之间的关系求出,把两直线的方程中的系数化为相同的,然后利用两平行直线间的距离公式,求得结果. 【详解】直线l1与l2平行,所以,解得, 所以直线l2的方程为:, 直线:即,与直线:的距离为: . 故选:C 【点睛】本题考查直线平行的充要条件,两平行直线间的距离公式,注意系数必须统一,属于基础题. 4、C 【解析】根据题意写出函数表达式为:,在上仅有一个零点分两种情况,情况一:在第一段上有零点, ,此时检验第二段无零点,故满足条件;情况二,第二段有零点, 以上两种情况并到一起得到:. 故答案为C. 点睛:在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论. 5、C 【解析】对于A,作差变形,借助对数函数单调性判断;对于C,利用均值不等式计算即可判断;对于B,D,根据不等式的性质及对数函数单调性判断作答. 【详解】对于A,,而函数在单调递增,显然,则,A不正确; 对于B,因为,所以,故,B不正确; 对于C,显然,,,C正确; 对于D,因为,所以,即,D不正确. 故选:C 6、C 【解析】结合函数单调性,由零点存在性定理可得解. 【详解】由为增函数,且, 可得零点所在的区间为,所以. 故选:C. 7、A 【解析】考点:奇偶性与单调性的综合 分析:根据题目条件,画出一个函数图象,再观察即得结果 解:根据题意,可作出函数图象: ∴不等式f(x)<0的解集是(-∞,-1)∪(0,1) 故选A 8、C 【解析】根据对数函数值域为R的条件,可知真数可以取大于0的所有值,因而二次函数判别式大于0,即可求得k的取值范围 【详解】因为函数y=log2(x2-2kx+k)的值域为R 所以 解不等式得k≤0或k≥1 所以选C 【点睛】本题考查了对数函数的性质,注意定义域为R与值域为R是不同的解题方法,属于中档题 9、A 【解析】先计算的坐标,再利用可得,即可求解. 【详解】, 因为,所以, 解得:, 故选:A 10、C 【解析】据条件即可知为偶函数,并且在,上是周期为2的周期函数,又,时,,从而可得出,,从而找出正确选项 【详解】解:函数在上图象关于轴对称; 是偶函数; 又时,; 在,上为周期为2的周期函数; 又,时,; ,; 故选: 【点睛】考查偶函数图象的对称性,偶函数的定义,周期函数的定义,以及已知函数求值,属于中档题 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P-ABC外接球的直径,即可求出三棱锥P-ABC外接球的表面积 【详解】 ∵三棱锥P−ABC中,PA=BC=4,PB=AC=5,PC=AB=, ∴构造长方体,使得面上的对角线长分别为4,5, , 则长方体的对角线长等于三棱锥P−ABC外接球的直径. 设长方体的棱长分别为x,y,z, 则, ∴三棱锥P−ABC外接球的直径为, ∴三棱锥P−ABC外接球的表面积为. 故答案为:26π. 【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径. 12、## 【解析】根据三角函数定义得到,,进而得到答案. 【详解】角的终边经过点, ,, . 故答案为:. 13、 【解析】首先判断正三棱柱外接球的球心,即上下底面正三角形中心连线的中点,然后构造直角三角形求半径,代入公式求解. 【详解】如图:设和分别是上下底面等边三角形的中心, 由题意可知连线的中点就是三棱柱外接球的球心,连接, 是等边三角形,且,, , 球的表面积. 故答案为: 【点睛】本题考查求几何体外接球的表面积的问题,意在考查空间想象能力和转化与化归和计算能力,属于基础题型. 14、 【解析】设扇形AOB的的弧长为l,半径为r,由已知可得l=3π,r=5,再结合扇形的面积公式求解即可. 【详解】解:设扇形AOB的的弧长为l,半径为r, ∴,l+2r=10+3π, ∴l=3π,r=5, ∴该扇形的面积S, 故答案为:. 【点睛】本题考查了扇形的弧长公式及扇形的面积公式,重点考查了方程的思想,属基础题. 15、 ①. ②. 【解析】根据给定条件利用偶函数的定义即可求出时解析式;再借助函数在单调性即可求解作答. 【详解】因函数是定义在上的偶函数,且当时,, 则当时,,, 所以当时,; 依题意,在上单调递增, 则,解得, 所以实数的取值范围是. 故答案为:; 16、 【解析】真数大于0求定义域. 【详解】由题意得:,解得:,所以定义域为. 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2)5. 【解析】 (1)利用指数幂的运算法则计算即得解; (2)利用对数的运算法则化简计算即得解. 【详解】(1)原式=; (2)原式=. 【点睛】本题主要考查指数对数的运算,意在考查学生对这些知识的理解掌握水平. 18、(1), (2) 【解析】(1)由同角三角函数的基本关系求解即可; (2)由商数关系化简求解即可. 【小问1详解】 ,, 【小问2详解】 19、(1) (2) 【解析】(1)可使用已知条件,表示出,然后利用诱导公式、和差公式和二倍角公式对要求解的式子进行化简,带入即可求解; (2)可根据和的值,结合和的范围,判定出的范围,然后计算出的值,将要求的借助使用和差公式展开即可求解. 【小问1详解】 角的终边经过点,所以. 所以. 【小问2详解】 由条件可知为第一象限角.又为第一象限角,,所以为第二象限角, 由得, 由, 得 . 20、(1),证明见解析 (2)证明见解析(3) 【解析】(1)由偶函数性质求,由列方程求,再证明; (2)利用单调性定义证明函数的单调性; (3)利用函数的性质化简可求. 【小问1详解】 因为函数是定义在R上的偶函数 ∴ ,综上, 从而 【小问2详解】 证明:因为 设,所以 又,∴ 所以 ∴在上为增函数; 【小问3详解】 ∵. ∵偶函数在上为增函数.在上为减函数 ∴ 21、(1);(2). 【解析】(1)首先根据诱导公式化简,再上下同时除以 后,转化为正切表示的式子,求值;(2)首先利用诱导公式化简,再转化为齐次分式形式,转化为正切求值. 【详解】(1)原式,上下同时除以后, 得; (2)原式, 上下同时除以后, 得展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2025-2026学年江苏南京市、盐城市高一数学第一学期期末经典模拟试题含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/12779157.html