山东滕州实验高中2025-2026学年高一数学第一学期期末统考模拟试题含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东 滕州 实验 高中 2025 2026 学年 数学 第一 学期 期末 统考 模拟 试题 解析
- 资源描述:
-
山东滕州实验高中2025-2026学年高一数学第一学期期末统考模拟试题 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知函数,若存在四个互不相等的实数根,则实数的取值范围为( ) A. B. C. D. 2.已知,,,那么a,b,c的大小关系为() A. B. C. D. 3.“角小于”是“角是第一象限角”的() A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 4.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆(为坐标原点)的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题: ①对于任意一个圆,其“优美函数”有无数个; ②函数可以是某个圆的“优美函数”; ③正弦函数可以同时是无数个圆的“优美函数”; ④函数是“优美函数”的充要条件为函数的图象是中心对称图形 A.①④ B.①③④ C.②③ D.①③ 5.如图是一个体积为10的空间几何体的三视图,则图中的值为( ) A2 B.3 C.4 D.5 6.已知函数,则满足的x的取值范围是() A. B. C. D. 7.函数的图象如图所示,则( ) A. B. C. D. 8.若,,则角的终边在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 9.如图,在四面体ABCD中,E,F分别是AC与BD的中点,若CD=2AB=4,EF⊥BA,则EF与CD所成的角为() A.90° B.45° C.60° D.30° 10.下列命题中正确的是( ) A.若,则 B.若,则 C.若,则 D.若,则 二、填空题:本大题共6小题,每小题5分,共30分。 11.若函数y=f(x)是函数y=2x的反函数,则f(2)=______. 12.函数的单调增区间是__________ 13.函数的部分图象如图所示,则函数的解析式为________. 14.已知一容器中有两种菌,且在任何时刻两种菌的个数乘积为定值,为了简单起见,科学家用来记录菌个数的资料,其中为菌的个数,现有以下几种说法: ①; ②若今天值比昨天的值增加1,则今天的A菌个数比昨天的A菌个数多10; ③假设科学家将B菌的个数控制为5万,则此时 (注:) 则正确的说法为________.(写出所有正确说法的序号) 15.命题“”的否定是______. 16.给出下列五个论断:①;②;③;④;⑤.以其中的两个论断作为条件,一个论断作为结论,写出一个正确的命题:___________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数. (1)求函数的单调区间; (2)若函数在有且仅有两个零点,求实数取值范围. 18.已知圆:关于直线:对称的图形为圆. (1)求圆的方程; (2)直线:,与圆交于,两点,若(为坐标原点)面积为,求直线的方程. 19.已知函数 (1)判断f(x)的奇偶性,并说明理由; (2)用定义证明f(x)在(1,+∞)上单调递增; (3)求f(x)在[-2,-1]上的值域 20.已知函数. (1)解关于不等式; (2)若对于任意,恒成立,求的取值范围. 21.已知函数的部分图像如图所示. (1)求函数的解析式; (2)若函数在上取得最小值时对应的角度为,求半径为2,圆心角为的扇形的面积. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】令,则,由题意,有两个不同的解,有两个不相等的实根, 由图可知,得或,所以和各有两个解 当有两个解时,则, 当有两个解时,则或, 综上,的取值范围是,故选D 点睛:本题考查函数性质的应用.本题为嵌套函数的应用,一般的,我们应用整体思想解决问题,所以令,则,由题意,有两个不同的解,有两个不相等的实根,再结合图象逐步分析,解得答案 2、B 【解析】根据指数函数单调性比较大小. 【详解】因为在上是增函数,又,所以,所以, 故选B. 【点睛】本题考查利用指数函数单调性比较指数幂的大小,难度较易.对于指数函数(且):若,则是上增函数;若,则是上减函数. 3、D 【解析】利用特殊值法结合充分、必要条件的定义判断可得出结论. 【详解】若角小于,取,此时,角不是第一象限角, 即“角小于”“角是第一象限角”; 若角是第一象限角,取,此时,, 即“角小于”“角是第一象限角”. 因此,“角小于”是“角是第一象限角”的既不充分也不必要条件. 故选:D. 4、D 【解析】根据定义分析,优美函数具备的特征是,函数关于圆心(即坐标原点)呈中心对称. 【详解】对①,中心对称图形有无数个,①正确 对②,函数是偶函数,不关于原点成中心对称.②错误 对③,正弦函数关于原点成中心对称图形,③正确. 对④,充要条件应该是关于原点成中心对称图形,④错误 故选D 【点睛】仔细阅读新定义问题,理解定义中优美函数的含义,找到中心对称图形,即可判断各项正误. 5、A 【解析】由已知可得:该几何体是一个四棱锥和四棱柱的组合体, 其中棱柱的体积为:3×2×1=6, 棱锥的体积为:×3×2×x=2x 则组合体的体积V=6+2x=10, 解得:x=2, 故选A 点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 6、D 【解析】通过解不等式来求得的取值范围. 【详解】依题意, 即:或, 即:或, 解得或. 所以的取值范围是. 故选:D 7、C 【解析】根据正弦型函数图象与性质,即可求解. 【详解】由图可知:,所以,故,又,可求得,,由可得 故选:C. 8、B 【解析】应用诱导公式可得,,进而判断角的终边所在象限. 【详解】由题设,,, 所以角的终边在第二象限. 故选:B 9、D 【解析】设G为AD的中点,连接GF,GE,由三角形中位线定理可得,,则∠GFE即为EF与CD所成的角,结合AB=2,CD=4,EF⊥AB,在△GEF中,利用三角函数即可得到答案. 【详解】解:设G为AD的中点,连接GF,GE 则GF,GE分别为△ABD,△ACD的中线. ∴ ,且,,且,则EF与CD所成角的度数等于EF与GE所成角的度数 又EF⊥ AB, ∴ EF⊥ GF 则△GEF为直角三角形,GF=1,GE=2,∠GFE=90° ∴ 在直角△GEF中, ∴ ∠GEF=30° 故选:D. 10、C 【解析】 分析】 利用不等式性质逐一判断即可. 【详解】选项A中,若,,则,若,,则,故错误; 选项B中,取 ,满足,但,故错误; 选项C中,若,则两边平方即得,故正确; 选项D中,取,满足,但,故错误. 故选:C. 【点睛】本题考查了利用不等式性质判断大小,属于基础题. 二、填空题:本大题共6小题,每小题5分,共30分。 11、1 【解析】根据反函数的定义即可求解. 【详解】由题知y=f(x)=,∴f(2)=1. 故答案为:1. 12、, 【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的单调性解不等式,可得到函数的递增区间. 详解:, , , 由, 计算得出, 因此函数的单调递增区间为:, 故答案为,. 点睛:本题主要考查三角函数的单调性,属于中档题.函数的单调区间的求法:(1) 代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2) 图象法:画出三角函数图象,利用图象求函数的单调区间. 13、 【解析】根据三角函数的图象,求出函数的周期,进而求出和即可得到结论 【详解】由图象得,, 则周期, 则, 则, 当时,, 则, 即 即, 即,, , 当时,, 则函数的解析式为, 故答案为 【点睛】本题主要考查三角函数解析式的求解,根据三角函数图象求出, 和的值是解决本题的关键 14、③ 【解析】对于①通过取特殊值即可排除,对于②③直接带入计算即可. 【详解】当nA=1时,PA=0,故①错误; 若PA=1,则nA=10,若PA=2,则nA=100,故②错误; B菌的个数为nB=5×104, ∴,∴. 又∵,∴ 故选③ 15、 【解析】根据全称命题的否定是特称命题,写出结论. 【详解】原命题是全称命题,故其否定是特称命题,所以原命题的否定是“”. 【点睛】本小题主要考查全称命题的否定是特称命题,除了形式上的否定外,还要注意否定结论,属于基础题. 16、②③⇒⑤;③④⇒⑤;②④⇒⑤ 【解析】利用不等式的性质和做差比较即可得到答案. 【详解】由②③⇒⑤, 因为,,则. 由③④⇒⑤, 由于,,则,所以. 由②④⇒⑤, 由于,且,则,所以. 故答案为:②③⇒⑤;③④⇒⑤;②④⇒⑤ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)单调递增区间为,单调递减区间为 (2) 【解析】(1)先由三角恒等变换化简解析式,再由正弦函数的性质得出单调区间; (2)由的单调性结合零点的定义求出实数的取值范围. 【小问1详解】 由得 故函数的单调递增区间为. 由得 故函数的单调递减区间为 【小问2详解】 由(1)可知,在上为增函数,在上为减函数 由题意可知:,即, 解得,故实数的取值范围为. 18、(1),(2) 【解析】(1)设圆的圆心为,则由题意得,求出的值,从而可得所求圆的方程; (2)设圆心到直线:的距离为,原点到直线:的距离为,则有,,再由的面积为,列方程可求出的值,进而可得直线方程 【详解】解:(1)设圆的圆心为,由题意可得, 则的中点坐标为, 因为圆:关于直线:对称的图形为圆, 所以,解得, 因为圆和圆半径相同,即, 所以圆的方程为, (2)设圆心到直线:的距离为,原点到直线:的距离为, 则,, 所以 所以,解得, 因为,所以, 所以直线的方程为 【点睛】关键点点睛:此题考查圆的方程的求法,考查直线与圆的位置关系,解题的关键是利用点到直线的距离公式表示出圆心到直线的距离为,原点到直线的距离为,再表示出,从而由的面积为,得,进而可求出的值,问题得到解决,考查计算能力,属于中档题 19、(1)f(x)为奇函数,理由见解析 (2)证明见解析(3)[-,-2] 【解析】(1)根据奇偶性的定义判断; (2)由单调性的定义证明; (3)由单调性得值域 【小问1详解】 f(x)为奇函数 由于f(x)的定义域为,关于原点对称, 且,所以f(x)为在上的奇函数 (画图正确,由图得出正确结论,也可以得分) 【小问2详解】 证明:设任意,, 有 由,得, , 即,所以函数f(x)在(1,+∞)上单调递增 【小问3详解】 由(1),(2)得函数f(x)在[-2,-1]上单调递增, 故f(x)的最大值为,最小值为, 所以f(x)在[-2,-1]的值域为[-,-2] 20、(1)当时,不等式的解集是 当时,不等式的解集是 当时不等式的解集是 (2) 【解析】(1)将不等式,转化成,分别讨论当时, 当时,当时,不等式的解集. (2)将对任意,恒成立问题,转化为,恒成立,再利用均值不等式求的最小值,从而得到a的取值范围. 【详解】(1)因为不等式 所以 即 当时,解得 当时,解得 当时,解得 综上:当时,不等式的解集是 当时,不等式的解集是 当时不等式的解集是 (2)因为对于任意,恒成立 所以,恒成立 所以,恒成立 令 因为 当且仅当,即时取等号 所以 【点睛】本题主要考查了含参一元二次不等式的解法以及恒成立问题,还考查了转化化归的思想及运算求解的能力,属于中档题. 21、(1). (2). 【解析】(1)由图象观察,最值求出,周期求出,特殊点求出,所以;(2)由题意得,所以扇形面积 试题解析: (1)∵,∴根据函数图象,得. 又周期满足,∴.解得. 当时,.∴. ∴.故. (2)∵函数的周期为,∴在上的最小值为-2. 由题意,角满足,即.解得. ∴半径为2,圆心角为的扇形面积为 .展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




山东滕州实验高中2025-2026学年高一数学第一学期期末统考模拟试题含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/12779143.html