分享
分销 收藏 举报 申诉 / 12
播放页_导航下方通栏广告

类型福建省莆田市涵江区莆田七中2025年高一上数学期末联考试题含解析.doc

  • 上传人:y****6
  • 文档编号:12773730
  • 上传时间:2025-12-05
  • 格式:DOC
  • 页数:12
  • 大小:688.50KB
  • 下载积分:12.58 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    福建省 莆田市 涵江区 莆田 2025 年高 数学 期末 联考 试题 解析
    资源描述:
    福建省莆田市涵江区莆田七中2025年高一上数学期末联考试题 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体为上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,其高为3,底面,底面扇环所对的圆心角为,弧AD长度为弧BC长度的3倍,且,则该曲池的体积为() A B. C. D. 2.若不等式的解集为,那么不等式的解集为() A. B.或 C. D.或 3.把长为的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是() A. B. C. D. 4.设全集,集合,则等于 A. B. C. D. 5.直线l:与圆C:的位置关系是   A.相切 B.相离 C.相交 D.不确定 6.已知集合,则下列关系中正确的是( ) A. B. C. D. 7.函数的部分图象如图所示,则函数的解析式为() A. B. C. D. 8.根据表格中的数据, 可以判定函数的一个零点所在的区间为. A. B. C. D. 9.要得到函数的图象,只需将函数的图象   A.向左平移个单位 B.向右平移个单位 C.向左平移个单位 D.向右平移个单位 10.下列函数中既是奇函数又在定义域上是单调递增函数的是() A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知函数,且,则__________ 12.函数的图象关于原点对称,则__________ 13.已知函数(且)的图象过定点,则点的坐标为______ 14.如果对任意实数x总成立,那么a的取值范围是____________. 15.已知一个扇形的弧所对的圆心角为54°,半径r=20 cm,则该扇形的弧长为_____cm 16.每一个声音都是由纯音合成的,纯音的数学模型是函数.若的部分图象如图所示,则的解析式为________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边经过点. (1)求的值; (2)若第一象限角满足,求的值. 18.旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过人时,飞机票每张元;若旅行团的人数多于人时,则予以优惠,每多人,每个人的机票费减少元,但旅行团的人数最多不超过人.设旅行团的人数为人,飞机票价格元,旅行社的利润为元. (1)写出每张飞机票价格元与旅行团人数之间的函数关系式; (2)当旅行团人数为多少时,旅行社可获得最大利润?求出最大利润. 19.已知 (1)若a=2,求 (2)已知全集,若,求实数a的取值范围 20.已知函数 (1)若为偶函数,求; (2)若命题“,”为假命题,求实数的取值范围 21.已知函数的图像关于y轴对称 (1)求k的值; (2)若此函数的图像在直线上方,求实数b的取值范围(提示:可考虑两者函数值的大小.) 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】利用柱体体积公式求体积. 【详解】不妨设弧AD所在圆的半径为R,弧BC所在圆的半径为r,由弧AD长度为弧BC长度的3倍可知,,即.故该曲池的体积. 故选:B 2、C 【解析】根据题意,直接求解即可. 【详解】根据题意,由,得, 因为不等式的解集为, 所以由,知,解得, 故不等式的解集为. 故选:C. 3、D 【解析】先得到两个正三角形面积之和的表达式,再对其求最小值即可. 【详解】设一个正三角形的边长为,则另一个正三角形的边长为, 设两个正三角形的面积之和为, 则, 当时,S取最小值. 故选:D 4、A 【解析】,= 5、C 【解析】利用点到直线的距离公式求出直线和圆的距离,即可作出判断. 【详解】圆C:的圆心坐标为:, 则圆心到直线的距离, 所以圆心在直线l上, 故直线与圆相交 故选C 【点睛】本题考查的知识要点:直线与圆的位置关系的应用,点到直线的距离公式的应用 6、C 【解析】 利用元素与集合、集合与集合的关系可判断各选项的正误. 详解】∵,∴,所以选项A、B、D错误, 由空集是任何集合的子集,可得选项C正确. 故选:C. 【点睛】本题考查元素与集合、集合与集合关系的判断,属于基础题. 7、B 【解析】由图像求出周期再根据可得,再由,代入可求,进而可求出解析式. 【详解】由图象可知,,得, 又∵,∴. 当时,,即, 解得.又,则, ∴函数的解析式为. 故选:B. 【点睛】本题主要考查了由三角函数的图像求函数解析式,需熟记正弦型三角函数的周期公式,属于基础题. 8、D 【解析】函数,满足. 由零点存在定理可知函数的一个零点所在的区间为. 故选D. 点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0, 这个c也就是方程f(x)=0的根.由此可判断根所在区间. 9、C 【解析】化函数解析式为,再由图象平移的概念可得 【详解】解要得到函数的图象,只需将函数的图象向左平移个单位, 即: 故选C 【点睛】本题考查函数图象平移变换,要注意的左右平移变换只针对自变量加减,即函数的图象向左平移个单位,得图象的解析式为 10、D 【解析】结合初等函数的奇偶性和单调性可排除选项;再根据奇偶性定义和复合函数单调性的判断方法可证得正确. 【详解】对A,∵是奇函数,在(一∞,0)和(0,+∞)上是单调递增函数,在定义域上不是递增函数,可知A错误; 对B,不是奇函数,可知B错误; 对C,不是单调递增函数,可知C错误; 对D,,则为奇函数;当时,单调递增,由复合函数单调性可知在上单调递增,根据奇函数对称性,可知在上单调递增,则D正确. 故选:D 二、填空题:本大题共6小题,每小题5分,共30分。 11、或 【解析】对分和两类情况,解指数幂方程和对数方程,即可求出结果. 【详解】当时,因为,所以,所以,经检验,满足题意; 当时,因为,所以,即,所以,经检验,满足题意. 故答案为:或 12、 【解析】根据余弦型函数的对称性可得出结果. 【详解】函数的图象关于原点对称,则. 故答案为:. 13、 【解析】令,结合对数的运算即可得出结果. 【详解】令,得,又 因此,定点的坐标为 故答案为: 14、 【解析】先利用绝对值三角不等式求出的最小值,进而求出a的取值范围. 【详解】,当且仅当时等号成立,故,所以a的取值范围是. 故答案为: 15、 【解析】利用扇形的弧长公式求弧长即可. 【详解】由弧长公式知:该扇形的弧长为(cm). 故答案为: 16、 【解析】 结合正弦函数的性质确定参数值. 【详解】由图可知,最小正周期, 所以, 所以. 故答案为:. 【点睛】本题考查由三角函数图象确定其解析式,掌握正弦函数的图象与性质是解题关键. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1) (2) 【解析】(1)可使用已知条件,表示出,然后利用诱导公式、和差公式和二倍角公式对要求解的式子进行化简,带入即可求解; (2)可根据和的值,结合和的范围,判定出的范围,然后计算出的值,将要求的借助使用和差公式展开即可求解. 【小问1详解】 角的终边经过点,所以. 所以. 【小问2详解】 由条件可知为第一象限角.又为第一象限角,,所以为第二象限角, 由得, 由, 得 . 18、(1);(2)当旅游团人数为或时,旅行社可获得最大利润为元. 【解析】(1)讨论和两种情况,分别计算得到答案. (2),分别计算最值得到答案. 【详解】(1)依题意得,当时,. 当时,; ∴ (2)设利润为,则. 当且时,, 当且时,,其对称轴为 因为,所以当或时,. 故当旅游团人数为或时,旅行社可获得最大利润为元. 【点睛】本题考查了分段函数的应用,意在考查学生的应用能力和计算能力. 19、(1); (2). 【解析】(1)根据解绝对值不等式的方法,结合二次根式的性质、集合交集的定义进行求解即可; (2)根据解绝对值不等式的方法、集合补集的定义,结合子集的性质进行求解即可. 【小问1详解】 当a=2时,因为,, 所以; 【小问2详解】 , 因为,所以,因此有或, 解得或,因此实数a的取值范围为. 20、(1) (2) 【解析】(1)根据偶函数的定义直接求解即可; (2)由题知命题“,”为真命题,进而得对,且恒成立,再分离参数求解即可得的取值范围是 【小问1详解】 解:因为函数为偶函数, 所以,即, 所以,即, 所以. 【小问2详解】 解:因为命题“,”为假命题, 所以命题“,”为真命题, 所以,对,且恒成立, 所以,对,且恒成立, 由对勾函数性质知,函数在上单调递增, 所以,且,即实数的取值范围是. 21、(1) (2) 【解析】(1)根据函数是偶函数,结合偶函数的定义,求参数的值; (2)由题意可知恒成立,分离参数后可得,转化求函数的值域,即可求得的取值范围. 【小问1详解】 , 所以, 因为函数的图像关于轴对称,函数是偶函数,所以, 即,解得:; 【小问2详解】 , 由题意可知,恒成立, 即,转化为, 令, 函数的值域是,所以.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:福建省莆田市涵江区莆田七中2025年高一上数学期末联考试题含解析.doc
    链接地址:https://www.zixin.com.cn/doc/12773730.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork