高中数学第三章圆锥曲线与方程3.1.1.1椭圆及其标准方程省公开课一等奖新名师优质课获奖PPT课件.pptx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 第三 圆锥曲线 方程 3.1 1.1 椭圆 及其 标准 公开 一等奖 名师 优质课 获奖 PPT 课件
- 资源描述:
-
-,*,-,3,.1.1.1,椭圆及其标准方程,1/27,1,.,了解椭圆实际背景,了解椭圆、椭圆焦点、椭圆焦距定义,.,2,.,了解推导椭圆标准方程过程,.,3,.,了解参数,a,b,c,几何意义,会求一些简单椭圆标准方程,.,2/27,1,.,圆锥曲线,通常把圆、椭圆、抛物线、双曲线统称为,圆锥曲线,.,2,.,椭圆定义,我们把平面内到两个定点,F,1,F,2,距离之和等于常数,(,大于,|F,1,F,2,|,),点集合叫作椭圆,.,这两个定点,F,1,F,2,叫作椭圆,焦点,两个焦点间距离叫作椭圆,焦距,.,说明,:(1),椭圆定义中提到,“,常数,”,惯用,2,a,表示,焦距惯用,2,c,表示,.,椭圆定义数学表示式为,|MF,1,|+|MF,2,|=,2,a,(2,a|F,1,F,2,|,),.,(2),当,2,a=|F,1,F,2,|,时,其轨迹是线段,F,1,F,2,.,(3),当,2,a,0,且,a,为常数,),命题乙,:,P,点轨迹是椭圆,则命题甲是命题乙,(,),A.,充分无须要条件,B.,必要不充分条件,C.,充要条件,D.,既不充分又无须要条件,4/27,解析,:,若,P,点轨迹是椭圆,则一定有,|PA|+|PB|=,2,a,(,a,0,且,a,为常数,),.,甲是乙必要条件,.,反过来,若,|PA|+|PB|=,2,a,(,a,0,且,a,为常数,),是不能推出,P,点轨迹是椭圆,.,这是因为,仅当,2,a|AB|,时,P,点轨迹才是椭圆,;,而当,2,a=|AB|,时,P,点轨迹是线段,AB,;,当,2,a,0,n,0,m,n,),7/27,8/27,题型一,题型二,题型三,题型四,9/27,题型一,题型二,题型三,题型四,解析,:,(1),点,P,到椭圆两个焦点距离之和为,2,a=,10,10,-,5,=,5,.,(2),由已知,条件,得,a,2,=,16,a=,4,由椭圆定义得,|AF,1,|+|AF,2,|=,2,a=,8,|BF,1,|+|BF,2,|=,2,a=,8,AF,1,B,周长为,|AF,1,|+|AB|+|BF,1,|=,16,.,三角形有两边之和为,10,第三边长度为,6,.,答案,:,(1)A,(2)6,10/27,题型一,题型二,题型三,题型四,反思,解题过程中碰到包括曲线上点到焦点距离问题时,应先考虑是否能够利用椭圆定义求解,.,椭圆上一点,P,与椭圆两焦点,F,1,F,2,组成,F,1,PF,2,称为焦点三角形,解关于椭圆中焦点三角形问题时要充分利用椭圆定义,三角形中正弦定理、余弦定理等知识,.,对于求焦点三角形面积,若已知,F,1,PF,2,可利用,把,|PF,1,|PF,2,|,看成一个整体,利用公式,|PF,1,|,2,+|PF,2,|,2,=,(,|PF,1,|+|PF,2,|,),2,-,2,|PF,1,|PF,2,|,及余弦定理求出,|PF,1,|PF,2,|,而无需单独求,|PF,1,|,|PF,2,|,这么能够降低运算量,.,11/27,题型一,题型二,题型三,题型四,12/27,题型一,题型二,题型三,题型四,13/27,题型一,题型二,题型三,题型四,14/27,题型一,题型二,题型三,题型四,15/27,题型一,题型二,题型三,题型四,【例,3,】,求适合以下条件椭圆标准方程,.,(1),焦点在,x,轴上,且经过点,(2,0),和,(0,1);,(2),焦点在,y,轴上,与,y,轴一个交点为,P,(0,-,10),点,P,到离它较近一个焦点距离等于,2,.,16/27,题型一,题型二,题型三,题型四,17/27,题型一,题型二,题型三,题型四,18/27,题型一,题型二,题型三,题型四,19/27,题型一,题型二,题型三,题型四,20/27,题型一,题型二,题型三,题型四,21/27,1 2 3 4 5,1.,以下说法正确是,(,),A.,已知,F,1,(,-,4,0),F,2,(4,0),到,F,1,F,2,两点距离之和等于,8,点轨迹是椭圆,B.,已知,F,1,(,-,4,0),F,2,(4,0),到,F,1,F,2,两点距离之和等于,6,点轨迹是椭圆,C.,到点,F,1,(,-,4,0),F,2,(4,0),两点距离之和等于点,M,(5,3),到,F,1,F,2,距离之和点轨迹是椭圆,D.,到点,F,1,(,-,4,0),F,2,(4,0),距离相等点轨迹是椭圆,答案,:,C,22/27,1 2 3 4 5,2.,到两定点,F,1,(,-,2,0),和,F,2,(2,0),距离之和为,4,点轨迹是,(,),A.,椭圆,B.,线段,C.,圆,D.,以上都不对,答案,:,B,23/27,1 2 3 4 5,24/27,1 2 3 4 5,解析,:,由椭圆定义,知,|AF,1,|+|AF,2,|=,8,|BF,1,|+|BF,2,|=,8,.,两式相加,得,|AF,1,|+,(,|AF,2,|+|BF,2,|,),+|BF,1,|=,16,.,因为,|AF,2,|+|BF,2,|=|AB|=,5,所以,|AF,1,|+|BF,1,|=,11,所以,|AF,1,|=,11,-|BF,1,|,所以,|AF,1,|-|BF,2,|=,(11,-|BF,1,|,),-|BF,2,|,=,11,-,(,|BF,2,|+|BF,1,|,),=,11,-,8,=,3,.,答案,:,3,25/27,1 2 3 4 5,26/27,1 2 3 4 5,27/27,展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




高中数学第三章圆锥曲线与方程3.1.1.1椭圆及其标准方程省公开课一等奖新名师优质课获奖PPT课件.pptx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/12698782.html