高中数学第三章数系的扩充与复数的引入3.2.2复数代数形式的乘除运算资料省公开课一等奖新名师优质课获.pptx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 第三 章数系 扩充 复数 引入 3.2 代数 形式 乘除 运算 资料 公开 一等奖 名师 优质课
- 资源描述:
-
3.2.2,复数代数形式乘除运算,1/26,已知两复数,z,1,=a+bi,,,z,2,=c+di(a,,,b,,,c,,,dR),(a+bi)(c+di)=_.,1.,加法、减法运算法则,2.,加法运算律:,对任意,z,1,,,z,2,,,z,3,C,z,1,+z,2,=z,2,+z,1,(z,1,+z,2,)+z,3,=z,1,+(z,2,+z,3,),交换律:,结合律:,(ac)+(bd)i,2/26,已知两复数,z,1,=a+bi,,,z,2,=c+di(a,,,b,,,c,,,dR),3.,复数加、减几何意义,设,OZ,1,,,OZ,2,分别与复数,z,1,=a+bi,,,z,2,=c+di,对应,.,x,o,y,Z,1,(a,,,b),Z,2,(c,,,d),Z,o,x,y,Z,2,(c,,,d),Z,1,(a,,,b),向量,OZ,1,+OZ,2,z,1,+z,2,向量,OZ,1,-OZ,2,z,1,-z,2,3/26,复平面中点,Z,1,与点,Z,2,间距离,|z,1,-z,2,|,表示:,_,_.,已知两复数,z,1,=a+bi,,,z,2,=c+di(a,,,b,,,c,,,dR),4.,复数模几何意义:,Z,1,(a,,,b),o,x,y,Z,2,(c,,,d),尤其地,,|z|,表示:,_.,复平面中点,Z,与原点间距 离,如:,|z+(1+2i)|,表示:,_,_.,点,(-1,,,-2),距离,点,Z(,对应复数,z),到,4/26,掌握复数代数形式乘法与除法运算法则,.,(重点),2.,对复数除法法则利用,.,(难点),3.,乘法运算法则与运算律,.,4.,共轭复数定义是什么,.,5/26,探究点,1,复数乘法运算,我们要求,复数乘法法则以下:,设,z,1,=a+bi,z,2,=c+di,是任意两个复数,那么它们乘积为:,(,a+bi,)(,c+di,)=ac+adi+bci+bdi,2,=ac+adi+bci-bd,=(ac-bd)+(ad+bc)i.,即,(,a+bi,)(,c+di,)=(ac-bd)+(ad+bc)i,注意:,两个复数积是一个确定复数,.,6/26,探究点,2,复数乘法运算律,复数乘法是否满足交换律,结合律以及乘法对加法分配律?,请验证乘法是否满足交换律,?,对任意复数,z,1,=a+bi,z,2,=c+di,则,z,1,z,2,=(,a+bi,)(,c+di,)=ac+adi+bci+bdi,2,=ac+adi+bci-bd=(ac-bd)+(ad+bc)i,而,z,2,z,1,=(,c+di,)(,a+bi,)=ac+bci+adi+bdi,2,=(ac-bd)+(ad+bc)i,所以,z,1,z,2,=z,2,z,1,(,交换律,),7/26,乘法运算律,对任意,z,1,z,2,z,3,C,有,z,1,z,2,=z,2,z,1,(,交换律,),(z,1,z,2,)z,3,=z,1,(z,2,z,3,),(,结合律,),z,1,(z,2,+z,3,)=z,1,z,2,+z,1,z,3,(,分配律,),8/26,例,1,计算,(1-2i)(3+4i)(-2+i).,解,:,(1-2i)(3+4i)(-2+i),=(11-2i)(-2+i),=-20+15i.,分析:,类似两个多项式相乘,把,i,2,换成,-1,9/26,例,2,计算,:(1)(3+4i)(3-4i);,(2)(1+i),2,.,解,:,(1)(3+4i)(3-4i),=3,2,-(4i),2,=9-(-16),=25.,(2)(1+i),2,=1+2i+i,2,=1+2i-1,=2i.,10/26,【,总结提升,】,(,1,)实数集中乘法公式在复数集中依然成立;,(,2,)复数混合运算也是先乘方,再乘除,最终加减,有括号应先处理括号里面,11/26,探究点,3,共轭复数定义,普通地,当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为,共轭复数,.,虚部不等于两个共轭复数也叫做,共轭虚数,.,实数,共轭复数是它本身,.,思索,:若,z,1,,,z,2,是共轭复数,那么,()在复平面内,它们所对应点有怎样位置关系?,(),z,1,z,2,是一个怎样数?,记法:,复数,z=,a+b,i,共轭复数记作,=,a-b,i,12/26,解:,作图,y,x,(a,b),(a,-b),z,1,=a+b,i,o,y,x,(a,0),z,1,=a,o,x,y,z,1,=b,i,(0,b),(0,-b),o,得出结论:,在复平面内,共轭复数,z,1,z,2,所对应点关于,实轴,对称,.,13/26,令,z,1,=a+b,i,则,z,2,=a-b,i,则,z,1,z,2,=(a+b,i,)(a-b,i,),=a,2,-ab,i,+ab,i,-b,2,i,2,=a,2,+b,2,结论:,任意两个互为共轭复数乘积是一个实数,.,14/26,探究点,4,共轭复数,相关运算性质,15/26,探究点,5,复数除法法则,类比实数除法是乘法逆运算,我们要求复数除法是乘法逆运算,.,试探求复数除法法则,.,16/26,17/26,复数除法法则是,:,方法,:,在进行复数除法运算时,通常先把,18/26,在作根式除法时,分子分母都乘以分母“有理化因式”,从而使分母“有理化”,.,这里分子分母都乘以分母“实数化因式”,(,共轭复数,),从而使分母“实数化”,.,19/26,先写成份式形式,然后分母实数化,分子分母同时乘以分母共轭复数,结果化简成代数形式,20/26,B,21/26,2.,若复数,z=1+i(i,为虚数单位,),是,z,共轭复数,,则,+,虚部为(,),A.0 B.-1 C.1 D.-2,3.(),A,B.C.D.,B,A,22/26,23/26,5.,已知方程,x,2,-,2,x,+2=0,有两虚根为,x,1,x,2,求,x,1,4,+,x,2,4,值,.,注,:,在复数范围内方程根与系数关系仍适用,.,24/26,i,i,25/26,1.,复数相乘类似于多项式相乘,只要在所得结果中把,i,2,换成,1,,而且把实部和虚部分别合并,.,2.,实数系中乘法公式在复数系中依然成立,.,3.,当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为,共轭复数,.,虚部不等于两个共轭复数也叫做,共轭虚数,.,实数,共轭复数是它本身,.,4.,复数代数形式除法实质:分母实数化,.,26/26,展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




高中数学第三章数系的扩充与复数的引入3.2.2复数代数形式的乘除运算资料省公开课一等奖新名师优质课获.pptx



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/12620658.html