分享
分销 收藏 举报 申诉 / 4
播放页_导航下方通栏广告

类型一元二次方程23.doc

  • 上传人:仙人****88
  • 文档编号:11990216
  • 上传时间:2025-08-26
  • 格式:DOC
  • 页数:4
  • 大小:31.50KB
  • 下载积分:10 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    一元 二次方程 23
    资源描述:
    一元二次方程 一、例题及分析: 例1、判断下列方程哪些是一元二次方程:   (1)3x2+4x-2=0;(2)x2-2x+3=6x-1;(3)7-x3=x+x2 ;(4)x2-2xy-4=0;(5)3x2=5-;(6)2-x2+y2=x+m   (7)6x2+3x=-3x(3-2x);(8)3(x+1)+3=3x(2x+5) 例2、关于x的方程(m+3)x2-mx+1=0是不是一元二次方程?   解:当m+3≠0,即m≠-3时,(m+3)x2-mx+1=0是关于x的一元二次方程.   当m=-3时,原方程变为3x+1=0,是一元一次方程. 例3、(1)用开平方法解方程(3x-1)2=9         (2)用配方法解方程3x2-1=6x           (3)用公式法解方程2x2+5x-3=0    (4)用因式分解法解方程x2+7x+12=0    例4、解关于x的方程   x2+mx+2=mx2+3x(m≠1)    例5、已知a、b、c是三角形的三边,求证:方程b2x2+(b2+c2-a2)x+c2=0没有实数根.      例6、求证方程(m-1)x2+3mx+m+1=0 (m≠1),必有两个不相等的实数根.    例7、解关于x的方程3x(a2x-a3n+1)+an(ax-a3n)=0(a>0且a≠1). 例8、如果关于x的方程mx2-2(m+2)x+m+5=0没有实数根,那么关于x的方程(m-5)x2-2(m+2)x+m=0的实根有几个?    例9、解某一元二次方程,甲抄错一次项,得根为-2和-3,乙抄错常数项,得根为6和-1,那么正确的方程应是____. 例10、解方程x2-2|x|-1=0.    例11、一个两位数,十位数与个位数字之和是5,把这个数的个位数与十位数字对调后,所得的新两位数与原来的两位数的乘积为736,求原来的两位数.   例12、一个长方形,它的长比宽的2倍还多1厘米,它的宽与另一正方形的边长相同,且这个长方形的面积比正方形的面积多72平方厘米,求此长方形与正方形的面积各是多少?    例13、已知三个连续奇数的平方和为371,求这三个奇数.     例14、有一个直角三角形三边的长为三个连续整数,求三边的长.   二、练习及答案   一、选择题   1.方程x2=x的解[  ]   A.0   B.1   C.0或1   D.0或-1   2.关于x的一元二次方程(m-1)x2+x+(m2+2m-3)=0有一个根是零,则m的值为[  ]   A.1   B.-3   C.1或-3   D.-1或3   3.如果一元二次方程x2+mx+n=0的两个根是0和-2,则m+n等于[  ]   A.2   B.4   C.-2   D.-4   4.如果方程2x2-x-3m=0与2x2+3x+m=0有一个根相同,则m一定等于[  ]   A.0   B.1   C.2   D.0或1   5.若c是实数,且x2-3x+c=0的一个根的相反数是x2+3x-c=0的一个根,则x2-3x+c=0的解是[  ]   A.1,2   B.-1,-2   C.0,3   D.0,-3   二、填空题   1.方程x(x-4)=4的根是______.   2.方程(3x-1)2=(2x-3)2的根是______.   3.关于t的方程t2-7mt-18m2=0的根是____.   4.关于y的方程y(y+b-1)=b的根是______.   5.方程9(x+2)2=16的根是______.   6.方程(m2-3)x2-(m+1)x+1=0,当m______时是一元二次方程,其判别式△=_______,当m=_______时是一元一次方程.   7.已知方程(2a-b)x2+(2b-c)x+2c-a=0有一个根是1,则a+b+c=_______.   8.若二次方程k(x-1)2+x=2无实数根,则k的最大整数值是______.   三、解答题   1.用配方法解方程2x2+7x-4=0   2.用适当的方法解下列方程   (1)4(x+3)2=25(x-2)2 ;(2)(x-2)(x-3)=1;(3)3x2-7x-6=0   3.解方程:(2x+1)2+3(2x+1)+2=0   4.解关于x的方程(a-b)x2+(b-c)x+(c-a)=0(a≠b)   5.不解方程,判别下列方程根的情况:   (1)x2+5x-1=0;(2)9x2-6x+1=0;(3)2x2+1=-x   6.已知两数和为7,积为-6,求两数.   四、思考题:   a为何值时,方程8x2+(a+1)x+(a-8)=0   (1)两根异号 (2)两根均为负根   (3)有一根为1   (4)有一根为0 (5)两根互为相反数  (6)两根互为倒数    
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:一元二次方程23.doc
    链接地址:https://www.zixin.com.cn/doc/11990216.html
    页脚通栏广告

    Copyright ©2010-2025   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork