韦达定理的论文.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 定理 论文
- 资源描述:
-
逐渐被遗忘的数学财富——韦达定理 [摘要]:韦达定理是由十六世纪著名的杰出数学家韦达发现的,它描述了一元二次方程的根与系数之间的关系。韦达定理的内容具有灵活性、应用广泛性、条件放缩性等特点,在一元二次方程中是一个重点。所以,它能培养学生逻辑思维能力、灵活解决问题能力等。但是,由于各种客观原因,韦达定理已正式得退出学生的教科书,并且逐渐被教师所遗忘。这就造成我们学生们也将失去认识这笔数学财富的机会。所以,我认为教师应借机向学生传授有关韦达定理的知识点。 关键词:一元二次方程 韦达定理 引言 在平时的教学过程中,教师们经常会碰到一些需要运用韦达定理的相关题目。但是,由于教科书中已经删除了该块内容,导致讲解此类题目时有很大的困难,学生理解起来也会有很多的迷惑之处。比如前段时间,在初三的一次辅导中,学生碰到了一题考查一元二次不等式的题目,题意如下: 已知不等式的解集为,则不等式的解集为_____________ 本题主要考查学生一元二次不等式与一元二次方程的转化,以及整体思想和转换思想的能力。学生要是按照平时的方程解法去做,解题难度会比较大,即使能力强的学生也要花上很长时间才能将解题过程写完整。但是,如果学生能理解并且应用韦达定理的话,此题的解题思路就会显而易见,并能简化解题过程。所以,我认为借助几种典型的题型来讲解和归纳韦达定理的重要性,是很有必要与意义的。 正文 任给一个一元二次方程,设他的两根为,利用求根公式 得到根和系数的关系:,这就是著名的韦达定理。它描述了方程的根和系数之间的关系,是一元二次方程解法的补充。接下来,我们来归纳一下韦达定理在我们教学中几种典型题型应用。 一.已知方程的一根,求另一根 例1. 已知关于的方程的一根为,求另一根和的值。 解析:由韦达定理可知,所以,,所以。 【注释】本题要是按照平时的做法,先将带入方程中,求出k值,再用求根公式去求另外一个解,虽然也能得到正确的答案。但是由于方程的根带有根号,计算时难度会加大,而且学生的出错率也会随之增加。但该题由韦达定理求解,明显能减少学生计算量,也能提高正确性。 二.对复杂系数的一元二次方程求解 例2.已知方程的两个解为,请求出的值? 解析:根据韦达定理可得,,所以学生很容易得出,所以。 【注释】:在本题中出现了另一个字母a,部分学生可能比较迷茫,不知道怎么求解。若学生直接采用求根公式进行求解,计算量会很大,而且出现了字母a,可能导致部分学生无法简化根的形式而出错。但是,此题采用韦达定理求解,就能跳过繁琐的计算,直接求出答案。 三,已知两根,构造新的一元二次方程 例3.已知某一元二次方程的两根为,二次项系数为2,请确定该方程的表达式。 解析:设所求方程为, 由韦达定理可得,。 解得, 所以所求一元二次方程为。 例4.已知方程,求一个一元二次方程,使它的根分别比第一个方程的两根大2. 解析:设所求方程的两个根为,且, 由韦达定理可得,则 所以。 【注释】:上面两题题型考查学生如何构造方程,需要学生有较强的理解和抽象思维能力。但是,初中学生的抽象能力与构造能力很薄弱,很难找到此题的切入点。倘若学生能采用韦达定理,其解题思路是很明显的,而且讲解时学生也很容易理解,能很大程度上降低了难度。 四.利用整体思想求代数式的值 例5.已知关于的一元二次方程的两个实数根满足,求实数的值。 解析:因为, 所以 即。 根据韦达定理可知。 所以。 解得 检验:当m=5时,,舍去 所以。 例6.若是方程的两个实数根,求(1)的值(2)的值. 解析:(1)由韦达定理可知,则 。 (2) 【注释】:上面两题型主要考查了学生韦达定理和整体代入的数学思想,这样就能简化代数式,方便计算。要是学生先将方程的根求出来的话,再代入代数式求值的话,这个过程计算会比较烦,特别是例5中海含有另外一个字母,会降低学生学习的兴趣。 五. 在一元二次不等式中的求解 例7.已知不等式的解集为,则不等式的解集为______________ 解析:由韦达定理可得,,, 从而推导得出,, 所以可化为,即 解为 【注释】:本题由于是一选择题,利用数学中的特殊值法很容易得出答案,但要是能完整写出解题过程的话难度较大,一般的学生很难找到头绪。但是,利用韦达定理进行求解的话,能帮助学生容易找到解题的思路和头绪,并且计算过程也能优化。 六. 在等式证明中的应用 例7.设实数满足 求证:中至少有一个数为1. 解析:不妨设,则由题意可得 所以由韦达定理可知,为方程的解。 所以中至少有一个数为1,从条件易知具有对称性 所以中至少有一个为1. 【注释】:韦达定理除了应用在一元二次方程中,也在许多证明中有很大的体现。比方该题,虽然有很强的对称性,但是想要证明得到结论并非易事。采用韦达定理能帮助解题者理清思路,明确目标,帮助解决问题。 结论 韦达定理在现行的教科书和作业题中的作用还是很大的,特别是在一元二次方程中的作用。所以,在现行的教材改革过程中,我们一线教师也应该注重那些被逐渐忽略的数学财富,比方韦达定理等,以上是我对韦达定理的一些见解。展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




韦达定理的论文.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/11989923.html