椭圆大题题型汇总例题+练习.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆 题型 汇总 例题 练习
- 资源描述:
-
椭圆大题题型 解决直线和圆锥曲线的位置关系的解题步骤是: (1)直线的斜率不存在,直线的斜率存,(2)联立直线和曲线的方程组; (3)讨论类一元二次方程(4)一元二次方程的判别式(5)韦达定理,同类坐标变换 (6)同点纵横坐标变换(7)x,y,k(斜率)的取值范围 (8)目标:弦长,中点,垂直,角度,向量,面积,范围等等 运用的知识: 1、中点坐标公式:,其中是点的中点坐标。 2、弦长公式:若点在直线上, 则,这是同点纵横坐标变换,是两大坐标变换技巧之一, 或者 。 3、两条直线垂直:则 两条直线垂直,则直线所在的向量 4、韦达定理:若一元二次方程有两个不同的根,则。 常见的一些题型: 题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)。 例题1、过点T(-1,0)作直线与曲线N :交于A、B两点,在x轴上是否存在一点E(,0),使得是等边三角形,若存在,求出;若不存在,请说明理由。 例题2、已知椭圆的左焦点为F,O为坐标原点。 (Ⅰ)求过点O、F,并且与相切的圆的方程; (Ⅱ)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围。 练习1:已知椭圆过点,且离心率。 (Ⅰ)求椭圆方程; (Ⅱ)若直线与椭圆交于不同的两点、,且线段的垂直平分线过定点,求的取值范围。 练习2、设、分别是椭圆的左右焦点.是否存在过点的直线l与椭圆交于不同的两点C、D,使得?若存在,求直线l的方程;若不存在,请说明理由. 题型三:动弦过定点的问题 例题3、已知椭圆C:的离心率为,且在x轴上的顶点分别为A1(-2,0),A2(2,0)。 (I)求椭圆的方程; (II)若直线与x轴交于点T,点P为直线上异于点T的任一点,直线PA1,PA2分别与椭圆交于M、N点,试问直线MN是否通过椭圆的焦点?并证明你的结论。 例题4、已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3;最小值为1; (Ⅰ)求椭圆C的标准方程; (Ⅱ)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证:直线过定点,并求出该定点的坐标。 练习:直线和抛物线相交于A、B,以AB为直径的圆过抛物线的顶点,证明:直线过定点,并求定点的坐标。 题型四:过已知曲线上定点的弦的问题 若直线过的定点在已知曲线上,则过定点的直线的方程和曲线联立,转化为一元二次方程(或类一元二次方程),考察判断式后,韦达定理结合定点的坐标就可以求出另一端点的坐标,进而解决问题。 例题6、已知点A、B、C是椭圆E: 上的三点,其中点A是椭圆的右顶点,直线BC过椭圆的中心O,且,,如图。 (I)求点C的坐标及椭圆E的方程; (II)若椭圆E上存在两点P、Q,使得直线PC与直线QC关于直线对称,求直线PQ的斜率。 练习:已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。 (1) 求椭圆C的方程; (2) E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。 题型五:共线向量问题 解析几何中的向量共线,就是将向量问题转化为同类坐标的比例问题,再通过未达定理------同类坐标变换,将问题解决。 例题7、设过点D(0,3)的直线交曲线M:于P、Q两点,且,求实数的取值范围。 例题8:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率为. (1)求椭圆C的标准方程; (2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若,,求的值. 练习:设椭圆的左、右焦点分别为、,A是椭圆C上的一点,且,坐标原点O到直线的距离为. (1)求椭圆C的方程; (2)设Q是椭圆C上的一点,过Q的直线l交x轴于点,较y轴于点M,若,求直线l的方程. 题型六:面积问题 例题9、已知椭圆C:(a>b>0)的离心率为短轴一个端点到右焦点的距离为。 (Ⅰ)求椭圆C的方程; (Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值。 练习、如图,直线与椭圆交于A、B两点,记的面积为。 (Ⅰ)求在,的条件下,的最大值; (Ⅱ)当时,求直线AB的方程。 练习1、已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4。 (Ⅰ)求椭圆的方程; (Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程。 练习2、已知中心在原点,焦点在x轴上的椭圆的离心率为,为其焦点,一直线过点与椭圆相交于两点,且的最大面积为,求椭圆的方程。 题型七:弦或弦长为定值问题 例题10 设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点, (I)求椭圆E的方程; (II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




椭圆大题题型汇总例题+练习.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/10701093.html