不等式知识点归纳大全.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不等式 知识点 归纳 大全
- 资源描述:
-
《不等式》知识点归纳 一.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值. (2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回); (3)含有两个绝对值的不等式如何去绝对值?(一般是分类讨论、平方转化或换元转化); (4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集. 二、 利用重要不等式 以及变式等求函数的最值时,务必注意a,b(或a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时). 三、.常用不等式有:(根据目标不等式左右的运算结构选用) a、b、cR,(当且仅当时,取等号) 四、含立方的几个重要不等式(a、b、c为正数): (,); 五、最值定理 (积定和最小) ①,若积,则当时和有最小值; (和定积最大)②,若和,则当是积有最大值. 【推广】:③已知若,则有则的最小值为: ④等式到不等式的转化:已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是________. 即 解得 故x+2y的最小值是4 如果求xy的最大值,则, 然后解关于的一元二次不等式,求的范围,进而得到xy的最大值 六、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法和放缩法(注意:对“整式、分式、绝对值不等式”的放缩途径, “配方、函数单调性等”对放缩的影响). 七、含绝对值不等式的性质: 同号或有; 异号或有. 八、不等式中的函数思想 不等式恒成立问题 “含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。本文就结合实例谈谈这类问题的一般求解策略。 一、函数法 (1)一次函数有: (2)一元二次函数有: 1)对恒成立; 2)对恒成立 (3)不等式中的取值范围有限制,则可利用根的分布解决问题。 例1.设,当时,恒成立,求实数的取值范围。 O x yx -1 解:设,则当时,恒成立 当时,显然成立; 当时,如图,恒成立的充要条件为: 解得。 综上可得实数的取值范围为。 二、最值法: 将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: (1)恒成立 (2)恒成立 例2.已知两个函数,其中为实数. (1)若对任意的,都有成立,求的取值范围; (2)若对任意的,都有,求的取值范围. (3)若对于任意,总存在使得成立,求的取值范围. 解:(1) 令, 问题转化为 在 上恒成立,即即可 (2)由题意可知当时,都有. (3)于任意,总存在使得成立,等价于的值域是的值域的子集, 三、分离变量法 若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。这种方法本质也还是求最值,但它思路更清晰,操作性更强。一般地有: 1)恒成立 2)恒成立 例3:已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若,若对于所有的恒成立,求实数t的取值范围. 解:题不等式中有三个变量,因此可以通过消元转化的策略,先消去一个变量,容易证明f(x)是定义在[-1,1]上的增函数,故 f(x)在[-1,1]上的最大值为f(1)=1,则对于所有的恒成立对于所有的恒成立,即对于所有的恒成立,令,只要,. 四、变换主元法 理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题降次、简化。 例4:,不等式恒成立,求的取值范围。 分析:题中的不等式是关于的一元二次不等式,但若把看成主元,则问题可转化为一次不等式在上恒成立的问题。 解:令,则原问题转化为恒成立()。 当时,可得,不合题意。 当时,应有解之得。 故的取值范围为。 五、数形结合法 数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。函数图象和不等式有着密切的联系: 1)函数图象恒在函数图象上方; 2)函数图象恒在函数图象下上方. 例5.设函数,,若恒有成立,试求实数a的取值范围. x y O 解:由题意得, 令①,②. ①可化为,它表示以(2,0)为圆心,2 为半径的上半圆;②表示经过定点(-2,0),以a为斜率的直线,要使恒成立,只需①所表示的半圆在②所表示的直线下方就可以了(如图所示).当直线与半圆相切时就有,即,由图可知,要使恒成立,实数a的取值范围是. 六、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例6:时,不等式恒成立,求的取值范围。 解:设,则问题转化为当时,的最小值非负。 (1) 当即:时, 又所以不存在; (2) 当即:时, 又 (3) 当 即:时, 又 综上所得: 例7:已知是实数,函数,如果函数在区间上有零点,求的取值范围. 解析:由函数的解析式的形式,对其在定区间上零点问题的解决需要考虑它是一次函数,还是二次函数,因而需就和两类情况进行讨论。 解:函数在区间[-1,1]上有零点,即方程=0在[-1,1]上有解, a=0时,不符合题意,所以a≠0,方程f(x)=0在[-1,1]上有解<=>或或或或a≥1. 所以实数a的取值范围是或a≥1. 点评:本题主要考察二次函数及其性质、一元二次方程、函数应用、解不等式等基础知识,考察了数形结合、分类讨论的思想方法,以及抽象概括能力、运算求解能力。 6展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




不等式知识点归纳大全.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/10686293.html